
CIC cluster structure and

management policies

Nguyen Tuan Duc, Keita Makino, Hiroki Asakawa
{duc, maki, ask}@nue.ci.i.u-tokyo.ac.jp

October 4, 2007

1 Introduction

As the result of the project ”Parallel and distributed programming environment
construction and management”, the CIC cluster has been installed. The cluster
is located in Engineering building 8 at Hongo campus.
This document describes the CIC cluster’s [1] hardware / software structure as
well as system performance, security and reliability.

2 Hardware structure

SW1

SW2 SW3

SW8SW7SW6SW5SW4 SW9 SW11SW10

004-010 011-017 018-024 025-031 039-045032-038 053-059046-052

002-003

000-001

100 Mbps

1000 Mbps

To GW

Figure 1: CIC cluster network structure

The cluster contains of about 60 PCs (most of these PCs have Intel HT 2.8GHz
processor, 1GB of RAM and 120GB of HDD). The PCs are connected via
gigabit-ethernet through a hierarchy of switches.
At the installation time, the cluster uses 11 switches (SW1 - SW11) as shown
in figure 1. The switches form a tree structure to make sure that no loop exists.
However, the tree structure may slow down system performance because of bot-
tleneck at the root node (SW1 in figure 1). The remedy should be a change in

1



network topology or using high performance switches with many ports for the
entire cluster.
Figure 1 also shows which PC is connected to which switch: host numbers
are placed beside or bellow each switch, host name associated with host num-
ber in the form of cic{host number}.cic.ci.i.u-tokyo.ac.jp. Users may use this
information to reduce the communication bottleneck when execute applications.
The cluster uses the IP range of 133.11.213.128 - 133.11.213.255 (133.11.213.128/25).

3 Software structure

This section describes software structure of the cluster and the installation pro-
cess including the installation of the Linux OS, NFS, NIS server etc..

3.1 Softwares used by CIC

CIC uses Fedora Core 6 as the operating system. Since FC6 supports kickstart
installation, the installation process of the entire cluster is straightforward.
Each node has it own file system, and a mount point to share users’ home di-
rectories (path /home in each node) via NFS. Currently, only cic000 exports its
home folder, thus users may only use hard disks attached to cic000. A method
to distribute the storage should be future work on the cluster.
User accounts are managed by the Network Information Service (Yellow Page
service). Each user has the same account name, password and path to home
directory at all nodes.
In addition to the above services, the cluster uses DNS to map host names to
IP addresses. The DNS server is not contained in computation nodes (cic000 -
cic059). Furthermore, the monitoring system (Ganglia), manual web pages etc.
are hosted by a WWW server, this server is also not contained in the above
computation nodes.
For parallel processing, LAM-MPI is installed at the shared folder /home/lammpi.
All users may use this version of MPI to compile and execute their programs (of
course, users can install MPI themselves, if they do not want to use LAM-MPI)

3.2 Installation of the Linux Operating System

The Fedora Core 6 distribution is first installed at a node by using installation
CD-ROM. After the installation, this node exports a directory contains ISO
images of the installation discs. The following line in /etc/exports file does the
job:

/share/install 133.11.213.128/255.255.255.128(ro)

To automate the installation process, we use kickstart installation. The packages
for installation, hostname, IP address ... information is stored in a kickstart con-
figuration file (ks.cfg) and put to a HTTP server (http://install server/ks.cfg).
Here is some important information in the file ks.cfg:

auth --useshadow --enablemd5 --enablenis
--nisdomain=myname --nisserver=133.11.x.x
# Use NFS installation media
nfs --server=133.11.x.x --dir=/share/install/
# Network information
network --bootproto=static --device=eth6 --gateway=133.11.y.y
--ip=133.11.z.z --nameserver=133.11.x.x
--netmask=255.255.255.0 --onboot=on --hostname=myhostname

2



Since many machines do not have CD-ROM, we need to use network boot. To
do this, the server node has to have a DHCP and TFTP service. At the server
node, the root folder of TFTP contains PXE Linux configuration file, PXE boot
loader, the Linux kernel (vmlinuz) image and the Initial Ram Disk (initrd.img).
The PXE Linux configuration is as follows:

label linux
kernel vmlinuz
append initrd=initrd.img ramdisk_size=10000 root=/dev/ram
ks=http://install_server/ks.cfg

To maintain user accounts information, the NIS server is installed at server
node, all other nodes use the server node to obtain accounts information.
After such preparation, we can turn on all nodes and begin the automated
installation process. The PXE boot client will find DHCP server to obtain
IP address and TFTP server to download the PXE boot loader and Linux
kernel. After loading the kernel into memory, the PXE boot loader will move
control to the kernel entry point. The kernel will boot the machine as normal
and start the Fedora Anaconda installer, provide it with the URL specified in
the append string above (http://install server/ks.cfg). The installer uses the
kickstart configuration file as specified, mount the /share/install folder as type
NFS and launch the installation process.
After the installation, each node has its hostname and IP address correctly
assigned. The NIS domain name is also declared and users can remote login to
every node from the server node.

3.3 Network File System (NFS) configuration

As the end of the above procedures, we can easily ssh-login to each node from
other nodes. This is the time to initially mount the Network File System, to
share the /home directory.
First, we need to determine which node should exports the /home directory.
In CIC cluster, cic000 is used, because it is connected to SW1, the top-level
switch. Thus, NFS server is installed at cic000, and a shared folder is exported.
All nodes mount this folder as /home.
At this time, we can create user accounts and their home directory will be shared
among nodes.

3.4 MPI installation

LAM-MPI is compiled at a node, and installed to a sub-directory of /home
(/home/lammpi)
All users may use this version of MPI implementation to compile and execute
their programs.

3.5 Ganglia installation

Ganglia is cluster monitoring system. It runs a daemon (gmond) at each nodes
to collect information about the node (such as CPU utilization, memory usage,
... ), and uses another daemon, called gmetad, to aggregate all nodes infor-
mation to a central node. A web interface front-end is provided, which queries
gmetad for the aggregated data and displays to web pages.
The installation method of Ganglia is thus gmond at each node, and gmetad at
a node. A HTTP server supports PHP script is also needed to run the front-end
of the software.
In our system, Ganglia web interface is at http://www.cic.ci.i.u-tokyo.ac.jp/ganglia/

3



. Users can use this interface to obtain information about the entire cluster, as
well as each node.

4 Performance

In this section, we present some empirical results in evaluation of the CIC clus-
ter.

4.1 CPU speed

Single CPU speed is measured. The benchmark performs a sequence of multi-
plications of 2 double variables.
The speed obtained (with optimizations such as loop un-rolling ... ) is 1077
MFLOPS on cic039 (Pentium 4, 2.8GHz) and 1155 MFLOPS on cic006 (with
Pentium 4, 3.0GHz). We believe this is the typical speed of CPUs in the cluster.
The performance for division of 2 double variables (with optimizations the same
as above) is 65 MFLOPS and 70 MFLOPS on cic039 and cic006, respectively.
Thus, multiplication can be done 16 times faster than division of double num-
bers.

4.2 Peer-to-peer communication bandwidth

Table 1 shows bandwidth between a pair of nodes. The lines from 1 - 8 are results
when 2 nodes connected to the same switch (switch number is in bracket).

Table 1: Bandwidth between pair of nodes
Pair Bandwidth (Mbps)
cic004 - cic005 (SW4) 798.5
cic011 - cic012 (SW5) 719.5
cic018 - cic019 (SW6) 731.1
cic029 - cic030 (SW7) 721.0
cic032 - cic033 (SW8) 745.3
cic039 - cic040 ( SW9) 673.0
cic046 - cic047 (SW10) 709.6
cic053 - cic054 ( SW11) 680.4
cic004 - cic011 722.8
cic032 - cic039 682.2
cic004 - cic032 751.7

Even NICs and switches support gigabit-ethernet, bandwidth between 2 peers
is approximately 700 Mbps because of overheads such as packet header.

4.3 Bi-section bandwidth

We measured bi-section bandwidth with a cut through SW1. The nodes partic-
ipated in the experiment are cic004 - cic059, of which, nodes in the left branch
of SW1 (as shown in figure 1) send and receive 100 MB (using TCP) to their
counterpart nodes in the right branch.
The following is pseudo-code of the experiment:

4



if ( node_number < 32 ) then
send_to( node_number + 28 );
recv_from( node_number + 28 );

else
recv_from( node_number - 28 );
send_to( node_number - 28 );

endif
bisection_bandwidth = bandwidth_of_pair * number_of_pairs;

Bisection bandwidth is approximately 1050 Mbps, bigger than speed of the
switch SW1 (1000Mbps). This is because many pairs of nodes communicate
in parallel, but not synchronous (i.e., pairs may communicate in overlapping
manner or pipelining manner). When the number of pairs becomes large, the
chance for overlapping their work increases and we gain the speed. Though, the
maximum bi-section bandwidth is around bandwidth of SW1 (1000Mbps), this
means that if their are 20 pairs of processes communicate in parallel, peer-to-
peer bandwidth is only 1000 / 20 = 50 Mbps. Thus, even the NIC at each node
is gigabit-ethernet NIC, we can only reach the speed of 50Mbps on each node.
This may slow down the performance of parallel applications.

4.4 Linpack benchmark result

0

10

20

30

40

50

60

0 8 16 24 32 40 48

Number of Processors

S
p
e
e
d
 
(
G

F
L
O

P
S
)

Figure 2: Linpack benchmark result

In this experiment we used the Linpack benchmark [3] to measure the speed of
performing floating point operations. We executed the benchmark with 1, 2, 4,
8, 16, 32 and 48 processors and get the best speed while changing benchmark’s
parameters.
Figure 2 shows the result of Linpack benchmark. The speed obtained with 48
processors is 51.2 GFLOPS.

5



0

5

10

15

20

25

30

35

40

0 8 16 24 32 40 48

Number of Processors

S
p
e
e
d
 
u
p
 
f
a
c
t
o
r

Figure 3: Speed-up factor for Linpack benchmark

Figure 3 shows the speed-up factor of the Linpack benchmark. The speed-up
factor with 32 processors is 26.1 and with 48 processors is 34.5.

5 Security

To maintain the security and prevent attacks from outside networks, IP-table
service is activated. The INPUT policy at each node is DROP, and accept only
packets from the CIC-subnet (133.11.213.128/25).
Still, we need to provide users the ability to remote-login from outside networks,
thus we allow a node to open its TCP port 22, for ssh from everywhere. After
login to this node, users may freely go to other nodes in the cluster.
At the server node, we also open port 53 for DNS server and port 80 for HTTP
server.

6 Reliability

This system is created with the hope that it will be reliable, but we can not
guarantee anything. The hard disk at cic000 may corrupt at any time, and
users’ data may be lost. Furthermore, nodes may crash suddenly and users’
processes may die without any warning. This cause many intricacies, especially
for parallel programs. Parallel applications can fall to infinite-loop to wait for
a crashed process to response something.
Thus, the users should conceive this problem clearly and check / backup their
computation / data frequently to reduce the damage to the least when disaster
occurs.

7 System management

Users who want to use CIC are required to register to get an account. The regis-
tration may be done simply by sending an email to admin@cic.ci.i.u-tokyo.ac.jp,
with the information about Username and SSH DSA public key.

6



The cluster will be shutdown in some condition (e.g., power cut off, etc. ). It
may take up to a week to recover from such condition because the cluster is at
Hongo campus, when members of the project are at Akihabara. We are looking
for volunteers in Hongo campus to become cluster’s administrator.
Users should read the User Manual [2] to clearly understand how to use the
cluster (e.g., how to run MPI programs, Java programs, ... ).

Acknowledgment

We would like to express our gratitude to many people who support us in this
IST Hands-on project. We are grateful to our project supervisor, Professor Ikuo
Takeuchi, who gave us the chance to participate in a very interesting project
and help us to complete the cluster’s infrastructure. We are also grateful to
Professor Kei Hiraki and Associate Professor Mary Inaba for their precious ad-
vice and support in implementation of the cluster.
We are deeply indebted to our Engineering Partners, Mr. Yuura Katsuhiko
and Dr. Kumeno Fumihiro who guide us through the project and provide valu-
able methodologies in group-working, documentation and management of the
project.
Mr. Junji Tamatsukuri, Sasada Koichi and Seiichi Yamamoto gave us valuable
advice, suggestions, technical support and solutions when we are posed with
difficult problems.
Finally, we would like to thanks all people in the IST Hands-on program for
their contribution to our project and for providing an interesting course and
financial support to IST students like us.

References

[1] http://www.cic.ci.i.u-tokyo.ac.jp

[2] H. Asakawa et al., CIC cluster user manual. http://www.cic.ci.i.u-
tokyo.ac.jp/manual/

[3] Jack Dongarra, Piotr Luszczek, Antoine Petitet. The
LINPACK Benchmark: Past, Present, and Future.
http://www.netlib.org/utk/people/JackDongarra/PAPERS/hpl.pdf.

7


