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We are interested especially in  

Relations between Entities  

toward Web Intelligence 

1. Computing Relational Similarity between Two 
Word Pairs  

(1) Computing Relational Similarity 

(2) Open Relation Extraction employing Sequential Co-

clustering 
 

2. Latent Relational Search Engine 
                                               (2009 Japanese Patent Application) 

 

3. Common and Universal Concept Description 
Language (CDL)  

 as a Foundation of Semantic Computing 
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Challenges in Web Information Retrieval 
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 Huge amount of data  Language barrier  

English 

English 

English 

 Hard to search for information in 

different languages 

 Only keyword-based Web search?  Numerous page retrieved 

 Monolingual information retrieval ?  Could not search in other languages  
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Latent relational search 
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(Google, Mountain View) 

(Microsoft, ?) 

Output ? = Redmond Input 

Monolingual 

Latent 

Relational 

Search Engine 

An entity retrieval paradigm based on the relational similarity  

between two entity pairs 

• D. Bollegala et al. , Measuring the Similarity between Implicit Semantic Relations from the Web, Proc. of WWW2009 

• T. Veale, The Analogical Thesaurus, IAAI 2003. 



Demo (Monolingual LRS) 
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Supporting sentences 



Cross-language latent relational search 
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(Google, Mountain View) 

(トヨタ, ?) 

Output ? = 愛知 (Aichi) Input 

Cross-language 

Latent 

Relational 

Search Engine 

We propose Cross-language latent relational search to utilize multilingual Web text 

トヨタは愛知県に本社を置く。 

Google is headquartered in Mountain View. 
(Toyota is headquartered in Aichi prefecture.) 



Screen shot (cross-language LRS) 
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Outline of the presentation 

8 

 Introduction 

 Method overview 

 Proposal:  

 Entity pair and relation extraction, indexing method 

 Hybrid pattern clustering algorithm to alleviate data 

sparseness problem  

 Evaluation and comparison 

 Potential applications of latent relational search 

 Conclusion 



Method overview 

• Representation of semantic relations by lexical patterns 

• Seoul is the capital of  South Korea. 
     (Seoul, South Korea) : X is the capital of Y, X * capital * Y, …  

English 

documents 

Japanese 

documents 

Entity pair Extractor 

(Seoul, South Korea): 

{ X is the capital of Y,  

X * capital * Y } 

 

(東京,日本): 

{XはY の首都,  

X * Y * 首都} 

 

Transliteration: 東京 Tokyo 

Multilingual entity pair indexing 

(Tokyo, Japan): 

{ X is the capital of Y, X, the capital of Y 

X はYの首都 } (parallel patterns!) 

 

Pattern translation X is the capital of Y 

X is Y‟s largest city 

… 

(Seoul, South Korea) 

 X はYの首都である 
 X がYの最大都市 
… 

(東京, 日本) 

X is the capital of Y 

X is Y‟s capital 

X はYの首都である 
X がYの最大の都市 

Pattern clustering 

Query:  
  English document only     Japanese document only 

          { (Seoul, ?),  (東京,日本) } 

Answer: 

South Korea 

 

 
Translate 
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Entity pair and relation extraction 

 For latent relational search, we don‟t need to 

explicitly extract predicates as relations 

Google acquired YouTube for $1.65 billion 

TextRunner Our system acquired(X, Y) 

X acquired Y 

X acquired Y for $NNN 

X acquired Y for $NNN billion 

 We use the n-grams of the context surrounding an 

entity pair to represent the relation 
 With this scheme, we can precisely measure the relational similarity 

 E.g., Microsoft acquired Powerset for $100 million → X acquired Y for $NNN 

M. Banko et al. The Tradeoffs Between Open and  

Traditional Relation Extraction, ACL’08 
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Example of relation extraction for the 

entity pair (Microsoft, Powerset) 

It is now official : Microsoft acquires San Francisco based company Powerset for $ 100M . 

Cut (outside window size = 3) 

It is now official: Microsoft acquires San Francisco based company Powerset for $ 100M . 

3 words 3 words 

Replace entities with variables 

now official : X acquires San Francisco based company Y for $ 100M 

Stemming 

now offici : X acquir San Francisco base compani Y for $ 100M 

Generate n-grams (lexical patterns) 

X acquir * Y; offici : X acquir * Y; now offici : X acquir * Y; X * compani Y for $; … 

It is now official : Microsoft acquires San Francisco based company Powerset for $ 100M . 

Tagging (NER) 
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Entity pair – Pattern co-occurrence matrix 

12 

 We represent co-occurrences between entity pairs and 
patterns in a matrix 

entity pair 

pattern 

X acquires Y 

X buys Y 

Y CEO X 

Y chief executive X 

(Google,  

Youtube) 

(Microsoft, 

Powerset) 

8 

0 

10 

0 

5 

0 

9 

0 

(Apple,  

Steve Jobs) 

10 

0 

0 

3 

(Microsoft,  

Ballmer) 

7 

0 

0 

8 

Number of  

Co-occurrences 



Multi-lingual entity pair and lexical pattern indexing 
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                Entity pair 

Patterns 
( Google, 

YouTube ) 

( Microsoft, 

Powerset ) 

(Rakuten,  

Infosiku) 

(Guguru, 

YouChubu) 

X ga Y wo baishu shita 30 10 400 350 

X ga Y wo katta 20 8 250 190 

X acquired Y 200 300 0 0 

X purchased Y for * $ 130 180 0 0 

X buys Y 80 60 0 0 

In Japanese, the transliteration of the named entity “Google” is “グーグル” (Guguru) 

However, sometime Japanese use the identical surface form of an entity with English. 

> 0 

Number of  

co-occurrences 

For cross-lingual search 



Measuring the relational similarity between two entity pairs 
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 Relational similarity (pair1, pair2) = cosine of their feature vectors 

 relsim( (Tokyo, Japan), (Paris, France) ) is expected to be high 

 

 However, this trivial method does not work well 

because a semantic relation can be expressed by 

multiple lexical patterns 

 Tokyo is the largest city in Japan. 

 Paris is the biggest city in France. 

 
Data sparseness problem! 

LARGEST_CITY(X, Y) 



Solution for monolingual case: pattern clustering 
[D. Lin et al. KDD2001, Bollegala et al. WWW2009] 
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 Lexical patterns that co-occur with similar sets of entity 
pairs are semantically similar (Distributional hypothesis) 

(Steve Ballmer, Microsoft): freq = 50 

(Larry Page, Google): freq = 75 

(Steve Jobs, Apple) : freq = 80 

… 

X is the CEO of Y 

(Steve Ballmer, Microsoft): freq = 82 

(Larry Page, Google): freq = 60 

(Steve Jobs, Apple) : freq = 90 

… 

Y’s CEO is X 

Similar 

lexical pattern: 

Similarity ≥ θ 

 Group semantically similar patterns into a cluster and consider patterns in a cluster 

as identical when measuring the relational similarity between two entity pairs. 

 D. Lin, P. Pantel. DIRT - Discovery of Inference Rules from Text, KDD2001 

D. Bollegala, Y. Matsuo, M. Ishizuka. Measuring the Similarity between Implicit Semantic Relations from the Web, WWW2009 



The pattern hard clustering algorithm 
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 Each pattern is assigned to only one cluster 
 Recognizing paraphrased lexical pattern in the same language 

X is the CEO of Y 

X acquired Y 

X bought Y 

X, CEO of the Y 



Lexical pattern translation 
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 We use Google Translate for translation of entities and 

lexical patterns 

 Method to verify the translation result: look it up in the index 

Translate 
(Google, Youtube) X acquired Y 

(楽天,インフォシーク) 
(Rakuten, Infoseek) 

(MS, Powerset) 

… 

X purchased Y 

X  bought Y 

X がYを買収した 

Index for the search engine 

… 
X がYを買収した 

Exists in 

the index? 

Yes 

Accept, mark 

as parallel 

patterns 

No 

Reject 

For cross-lingual search 



                Entity pair 

Patterns 
( Google, 

Youtube ) 

( Microsoft, 

Powerset ) 

( Rakuten,  

Infoseek ) 

(Guguru, 

YouChubu) 

X ga Y wo baishu shita,  

X acquired Y 
230 310 400 350 

X ga Y wo katta 20 8 250 190 

X purchased Y for * $ 130 180 0 0 

X buys Y 80 60 0 0 

                Entity pair 

Patterns 
( Google, 

Youtube ) 

( Microsoft, 

Powerset ) 

( Rakuten,  

Infoseek) 

(Guguru, 

YouChubu) 

X ga Y wo baishu shita 30 10 400 350 

X ga Y wo katta 20 8 250 190 

X acquired Y 200 300 0 0 

X purchased Y for * $ 130 180 0 0 

X buys Y 80 60 0 0 

Merging parallel patterns (rows), entity pairs (columns) 
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After merging, the cosine similarity between “X buys Y” and  

“X ga Y wo baishu shita”  (“X acquired Y”) is increased 

p
a
ra

lle
l 

For cross-lingual search 



Parallel pattern sparseness problem 
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 Very small number of parallel patterns 

X acquired Y 

Machine translation 
X が Y を買収した 

Human writer 

X が Yを買収した 

XがYを買った 

YがXに買収された 

… 

With machine 

translation, we can 

only find this  

 Exactly matched pattern sparseness problem 

 Many paraphrased patterns in the same language: 

X acquired Y, X bought Y, Y merged with X, … 



A parallel pattern has a smaller similarity 

than non-parallel patterns 
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 Therefore, a pattern with parallel partners needs a 

smaller clustering similarity threshold θ2 to be 

grouped into an appropriate cluster. 

X bought Y       { (Google, Youtube), (MS, Powerset), (Ebay, EachNet), (Apple, Emagic)} 

[X acquired Y, XがYを買収]     { (Google, Youtube), (MS, Powerset), (Guguru, YouChubu)} 

X purchased Y       { (Google, YouTube), (MS, Powerset), (Ebay, EachNet)} 



Proposal: use a soft-clustering step with smaller θ 
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 Purpose: associate as many paraphrased parallel 

patterns as possible to a cluster 

X が Y を買収した 
(X acquired Y) 

X bought Y,  

X purchased Y 

X merged with Y 

X is the CEO of Y 

θ = 0.4 
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X acquired Y 

X bought Y 

X purchased Y 

X to acquire Y 

X is the capital of Y 

X is Y’s capital 

X がYの首都 

XがYを買収した 

X は Y の首都 

X acquired Y 
X to acquire Y 

X bought Y 
X purchased Y 

X is the capital of Y 
X is Y’s capital 

XがYを買収した 

X がYの首都 
X は Y の首都 

Hard clustering 

(θ large) 

Recognizing 

paraphrased lexical 

pattern in the same 

language 
 

The hybrid pattern clustering algorithm  



The hybrid pattern clustering algorithm  
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X acquired Y 

X bought Y 

X purchased Y 

X to acquire Y 

X is the capital of Y 

X is Y‟s capital 

X がYの首都 

XがYを買収した 

X は Y の首都 

X acquired Y 
X to acquire Y 

X bought Y 
X purchased Y 

X is the capital of Y 
X is Y’s capital 

XがYを買収した 

X がYの首都 
X は Y の首都 

 

Recognizing 

similar lexical 

patterns across 

languages 

 

XがYを買収した 

X は Y の首都 

X is the capital of Y 

X acquired Y 

XがYを買収した 



Naïve method for measuring the similarity 

between two lexical patterns 
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                Entity pair 

Patterns 
(Google, 

YouTube) 

( Microsoft, 

Powerset ) 

( Rakuten,  

Inforseek) 

(Google Inc., 

YouTube) 

X ga Y wo baishu shita 30 10 400 10 

X ga Y wo katta 20 8 250 5 

X acquired Y 2 300 0 100 

X purchased Y for * $ 3 180 0 200 

X buys Y 80 60 0 30 

Cosine similarity 

 Room for improvement: 
 Synonyms, similar words, similar entity pairs 
 If we can compress them into a dimension … 

Use SVD 

here! 



                Entity pair 

Patterns 
( Ebay, 

EachNet ) 

( Microsoft, 

Ballmer) 

( Rakuten,  

Infoseek) 

(Guguru, 

YouChubu) 

X ga Y wo baishu shita, 

X acquired Y 
100 0 400 350 

X ga Y wo katta 0 0 250 190 

X purchased Y for * $ 130 0 0 0 

X is the CEO of Y 0 60 0 0 

Candidate retrieval and ranking 
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 Use cosine similarity, but lexical patterns in the same 

cluster are considered as in the same dimension 

cosine 



Evaluation 
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 Metric: MRR  
 Mean reciprocal rank 

 For a query set Q: 





Qq qrQ

Q
11

)MRR( ( rq is the rank of the first answer 

of the query q ∈ Q) 

Text corpus 

(1.6GB 

Web pages) 

 Data set 

Relation type Example 

Capital (Paris, France), (東京, 日本) … 

CEO (Apple, Steve Jobs), (トヨタ, 豊田章男) .. 

Birthplace (Albert Einstein, Ulm), (浅田真央, 愛知) 

Headquarters (Microsoft, Redmond), (任天堂, 京都) ... 

Satellite (Moon, Earth), (オベロン, 天王星) … 

President (Barack Obama, U.S), (李明博, 韓国) … 

Prime Minister (David Cameron, U.K), (菅直人, 日本) … 

Acquisition (Google, YouTube), (楽天, インフォシーク) 



Determine an appropriate value for θ1  
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Pattern clustering similarity threshold θ1   

 At θ1 = 0.4, we achieve the best result for monolingual query sets 

 θ1 is the similarity threshold for the hard clustering step 
 To recognize paraphrased lexical patterns in the same language 



Adjusting the parameter θ2  

 θ2 is the similarity threshold in the soft clustering step 

 To recognize paraphrased lexical patterns across languages 
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 At θ2 = 0.15, we achieve the best average performance for 

cross-language query sets 



Performance on monolingual query sets 
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Query set 

English Japanese 

 We achieve very high MRR on monolingual query sets 



Performance on cross-language query sets  

 An MRR of 0.6 on cross-language query sets 
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Effect of the soft clustering step 
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Only first phase With second phase 

With the soft clustering phase (the second phase) : MRR = 0.430 

Without the soft clustering phase : MRR = 0.186 



Effect of LRA (SVD) 
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Query set 

Without LRA With LRA 

On average, the average MRR of eight query sets is improved from 0.43 to 0.50  

(statistically significant under a paired t-test of 400 samples) 



Performance of the proposed method  

and existing methods 
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 Kato et al. 2009 : Query by Analogical Example: Relational Search Using Web Search Engine Indices (CIKM „09) 

Top N means the percentage of queries with correct answer in the Top N results. 

JJ: Japanse-Japanese monolingual queries 

EE: English-English monolingual queries 

 Doc. Trans. (Baseline) : Translating all documents into English, then monolingual search 

Method MRR Top 1 Top 5 Top 10 Top 20 

Kato et al. 2009 [JJ] 0.545 43.3 68.3 72.3 76.0 

Proposed [EE] 0.971 94.9 99.9 100 100 

Proposed [JJ] 0.889 87.0 91.0 91.0 91.0 

Doc. Trans. (Baseline) [Cross] 0.345 30.5 39.3 40.8 42.0 

Proposed [Cross] 0.605 49.8 74.5 78.5 82.0 



Potential applications of latent relational search 
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Product search, Location search 
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(Apple, iPhone) (Google, ?) 

No need to know keywords such as 

“Android” or “smart phone”, … 

Japan 

Mt. Fuji 

California 

? 

 Very effective when a user does not know the exact keywords to 

formulate a query for keyword-based Web search engines. 



Supporting human translators 
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 The evidences (supporting sentences) provide 

interesting human-quality examples sentences that 

mentioned the relation in multi-languages 

I want to translate “Google 

acquired YouTube” into Japanese! 

(グーグル, ?) 

(Microsoft, Powerset ) 

Cross-language 

Latent 

relational 

search 

-グーグルがユーチューブを買収した。 

- Microsoft has acquired Powerset. 

 



Recommend friends in Social Networks 

 {(Peter, Alice), (John, ?)} 
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Output: Anna 

Recommend Anna for John! 

 This kind of recommendations might be applied when John 

is viewing the profile of Peter. 



Conclusion 

 We have presented Latent relational search, a new 

entity retrieval paradigm 

 Using relational similarity for ranking 

 

 We achieve high MRR on monolingual latent 

relational search, an moderate performance on cross-

language latent relational search 

 

 We discuss many applications of latent relational 

search, such as product search or provide parallel 

sentences for human translators. 
38 



Help wanted: 

• Representation of semantic relations by lexical patterns 

• Seoul is the capital of  South Korea. 
     (Seoul, South Korea) : X is the capital of Y, X * capital * Y, …  

English 

documents 

Japanese 

documents 

Entity pair Extractor 

(Seoul, South Korea): 

{ X is the capital of Y,  

X * capital * Y } 

 

(東京,日本): 

{XはY の首都,  

X * Y * 首都} 

 

Transliteration: 東京 Tokyo 

Multilingual entity pair indexing 

(Tokyo, Japan): 

{ X is the capital of Y, X, the capital of Y 

X はYの首都 } (parallel patterns!) 

 

Pattern translation X is the capital of Y 

X is Y‟s largest city 

… 

(Seoul, South Korea) 

 X はYの首都である 
 X がYの最大都市 
… 

(東京, 日本) 

 

 
Translate 
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We are blocked if we issue a 

large number of queries to 

Google Translate! 

We‟d appreciate if you could 

allow us to freely access to 

Google Translate. 



Thank you! 

    For a live demo, please visit  

 

   http://www.miv.t.u-tokyo.ac.jp/duc/milresh/ 

  

or google for “latent relational search”! 
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