
Department of Creative Informatics

Graduate School of Information Science and Technology

THE UNIVERSITY OF TOKYO

Master Thesis

Abstracting agent cooperation protocols in

agent oriented programming by

collective operations
エージェント指向プログラミングにおける集団操作を利用した

エージェント協調の抽象化

Nguyen Tuan Duc
グェン　トアン　ドゥク

Supervisor: Professor Ikuo Takeuchi

January 2009

i

Abstract
Multiagent system has been recognized as one of the next generation software archi-

tecture since it can be used for modeling a wide-range of complex problems as well as
utilizing the massive power of distributed parallel computer systems. It has these abilities
because of its two main characteristics, namely autonomy and cooperation. Each agent
in a multiagent system acts as an autonomous entity which is able to reasoning about
and adapt to any changes in the computing environment. Furthermore, by exchanging
useful knowledge about the current situation, agents are able to cooperate with each
other to achieve the overall goals. Many programming languages and frameworks have
been proposed for programming autonomous intelligent software agents. Unfortunately,
implementing cooperation protocols between agents is still a challenging task to create in-
telligent multiagent systems because there is a lack of models, languages and frameworks
for description and execution of agents’ cooperative actions. Therefore, in this thesis, we
concentrate on the cooperation model of agents in multiagent systems by proposing meth-
ods for simplifying the description of cooperation protocols as well as designing language
and building runtime system to support cooperative actions of agents.

This thesis proposes a new approach for abstraction and realization of agent cooperation
protocols, that is using collective operation, a concept in parallel distributed programming,
as cooperation primitive. To show that cooperation can be smoothly integrated into agent
oriented programming, we designed and implemented a new agent oriented programming
language called Yaccai which supports the description and execution of these cooperation
primitives while maintaining the autonomous computational model of agents. Collective
operations are implemented as language constructs of Yaccai. Many complex cooperation
protocols can be straightforwardly mapped to collective operation constructs in Yaccai.

To prove the powerfulness of our model, we implemented the FIPA agent interaction
protocols using message passing APIs (send, receive and collective operations) supported
in our language. We show that using collective operations, many protocols in FIPA
interaction protocol set are not only simple for coding but also intuitive to understand.

To evaluate the performance of cooperation protocols implemented using collective op-
erations, we carried out many experiments on the Vacuum Cleaner simulation problem
with different computational resources and problem settings. Our experiments show that
collective operations allow agents to effectively cooperate to solve sophisticated problems
of Distributed Artificial Intelligence.

iii

概要
マルチエージェントシステムは次世代のソフトウェアアーキテクチャのひとつであり、さま

ざまな種類の複雑な問題のモデリング手法として知られている。マルチエージェントシステム
が強い問題解決能力を持つのは、自律性と協調性という２つの特徴を持っているからである。
個々のエージェントは自律的に計算環境の変化に適応し、達成したいゴールに向けて行動して
いる。更に、マルチエージェントシステムの中の複数エージェントが通信、同期をして、知識
を交換し、協調しながら問題を解決していく。すなわち、マルチエージェントシステムは並列
分散計算機環境の巨大な計算能力を出せるソフトウェアモデルである。既存研究では、自律
エージェントの記述手法として、エージェント指向プログラミング (AOP) をはじめ、多くの
フレームワークが提案されている。しかし、マルチエージェントでの協調記述を支援する言語
やフレームワークがまだ十分でないため、マルチエージェント開発はまだ困難な作業である。
そこで、本研究は、エージェント協調記述を簡単にする手法とマルチエージェント開発のため
のプログラミング言語と実行環境に注目する。
本論文はマルチエージェント協調プロトコルを簡単な集団操作を用いて構成することによ

りエージェントの協調を抽象化し、協調プロトコルを見通しよく、かつ検証しやすくすること
を提案する。すなわち、協調のプリミティブとして、並列分散プログラミングでよく知られて
いる集団操作を利用する。また、協調と自律というエージェントの２つの排他的な性質を 1つ
のモデルに柔軟に統合することが可能であることを明らかにするために、Yaccai という新し
いエージェント指向プログラミング言語を設計し、それを効率よく実装するための新しいエー
ジェントの実行と通信モデルを提案する。集団操作は設計した言語のプリミティブであり、複
雑な協調プロトコルをこれらのプリミティブを利用するだけで記述できる。更に言語の実行時
システムを利用して分散マルチエージェントシステム全体を容易に構成、実行できる。
また、本研究が提案した集団操作の集合の記述力や表現力を評価するために、いくつかの

複雑なエージェント協調プロトコルを記述した。その中で最も重要なプロトコル集合として、
FIPAの全部で 11 個のエージェントインタラクションプロトコルを我々の集団操作で簡潔に
記述できることを確認した。
更に、集団操作で記述した協調プロトコルの協調性能を調べるために、Vacuum Cleaner問

題をソフトウェアマルチエージェントシステムを用いて複数の計算機環境と問題設定でシミュ
レーションした。その実験結果から提案した集団操作によって効率よくエージェントの分散協
調問題をモデリングできることが明らかになった。すなわち、本システムが分散人工知能の諸
問題を解決するためのプラットフォームとして有効なことを明らかにした。

v

Acknowledgements

I am extremely grateful to my supervisor, Professor Ikuo Takeuchi, for all the guidance
and support he has given me. Without his insightful comments on the overall direction
and stimulating suggestions about the evaluation method, this research would not have
been possible. His state-of-the-art Japanese and English have helped me a lot not only in
writing papers, presenting slide shows but also in everyday conversations. I am enjoying
his infinite source of humor that he delivers in every of his talks, comments and even in
his emails. This has made the research life more interesting and allowed me to relax even
in great pressure of completing a long thesis.

I am grateful to the thesis committee members, especially Professor Masami Hagiya
and Professor Hiroshi Esaki, for their precious comments and suggestions to make my
thesis better.

I would like to thank Dr. Koichi Sasada for his valuable comments on my research,
and in particular, on my presentations and thesis. I really appreciated his kindness as
he provides us with many interesting books about system programming, and of course,
about Ruby.

I would also like to thank Dr. Yoshinori Tanabe and Dr. Takefumi Miyoshi for their
suggestions on this work and particularly for their guidance on presentation and thesis
writing. The figure about Agent oriented programming model in this thesis is a piece of
art that they created for me.

I would like to express my gratitude to all other members in my laboratory for their
encouragement and support for my research as well as daily life. Their guidance about
Akihabara and delicious restaurants around the Daibiru is wonderful and amazing.

Finally, I wish to thank everyone else for their support and encouragement that help
me to complete this thesis.

vii

Contents

Chapter 1 Introduction 1
1.1 Background and Motivation . 1
1.2 Contribution of this Work . 2
1.3 Organization of this Thesis . 3
1.4 Font face convention in this Thesis . 3

Chapter 2 Multiagent systems and agent cooperation protocols 4
2.1 Multiagent systems . 4
2.2 Agent oriented programming . 5
2.3 Agent cooperation protocols . 5

Chapter 3 Related work 7
3.1 Agent oriented programming languages 7
3.2 Multiagent cooperation models . 8
3.3 Agent-oriented methodologies for grid applications 9

Chapter 4 Abstraction of agent cooperation protocols 10
4.1 Building blocks for cooperation . 10
4.2 Set of essential collective operations 12
4.3 Building cooperation protocols from collective operations 15
4.4 Example implementation of some cooperation protocols 17

Chapter 5 Communication and execution model 22
5.1 Agent execution and communication model 22
5.2 The Yaccai programming language . 25

Chapter 6 Evaluation 29
6.1 Expressiveness of collective operations as agent cooperation primitives 29
6.2 Performance of cooperation protocols implemented with collective op-

erations . 32

Chapter 7 Conclusion and future work 39
7.1 Conclusion . 39
7.2 Future work . 39

Publications 41

References 42

Appendix A Implementation of some FIPA protocols using collective operations 45
A.1 Implementation of the FIPA Recruiting Interaction Protocol 45
A.2 Implementation of other FIPA Interaction Protocols 45

viii Contents

Appendix B Grammar of the Yaccai programming language 47

ix

List of Figures

2.1 A software multiagent system . 4
2.2 The agent oriented programming model 5

4.1 Essential collective operations . 13
4.2 Implementation of an auction protocol by collective operations 15
4.3 Cooperative problem solving using collective operations. 17
4.4 FIPA Contract Net Interaction Protocol (CNET) 18
4.5 Implementation of FIPA CNET protocol using collective operations . . . 19
4.6 FIPA Recruiting Interaction Protocol . 20
4.7 Implementation of FIPA Recruiting protocol 20

5.1 Communication model for a multiagent system 23
5.2 Agent execution model (execution of agent’s reasoning layer) 24
5.3 Excerpt of Yaccai grammar . 26
5.4 A simple multiagent system definition . 28

6.1 Implementation of Contract Net Interaction Protocol (CNET) in Yaccai 30
6.2 Implementation of Contract Net Interaction Protocol (CNET) in JADE 31
6.3 Homogeneous Vacuum Cleaner problem 32
6.4 Average score of 5 times of simulation on map dense 34
6.5 Average score of 5 times of simulation on map sparse 34
6.6 Average score of 5 times of simulation on map sparse with “explore” com-

mand. 35
6.7 Heterogeneous Vacuum Cleaner problem 36
6.8 Average number of move commands of heterogeneous agent teams 37
6.9 Communication cost that cooperation takes (average number of messages

an agent sent for cooperation) . 38

A.1 Implementation of the FIPA Recruiting Interaction Protocol 46

xi

List of Tables

4.1 Collective operations . 12

5.1 Differences between the proposed model and MPI 23
5.2 Belief-base operations . 27

1

Chapter 1

Introduction

1.1 Background and Motivation
The popularization of parallel distributed computing infrastructures such as cluster and
grid has lead to many software applications which contain many components that com-
municate with each other in sophisticated cooperation protocols with complex communi-
cation patterns. Furthermore, the distributed nature of these infrastructures requires the
operating programs be able to cope with unpredictable changes in the environment and
adapt to the situation in an appropriate manner. Multiagent system (MAS), the software
architecture that consists of many autonomous intelligent agents which interact by send-
ing/receiving messages of several types, is a suitable paradigm for modeling these kinds
of software applications. Multiagent system can be used for modeling problems which are
difficult or impossible for a single monolithic program to solve. The main characteristics
that give multiagent systems this powerful problem solving ability are autonomy and co-
operation. Each agent in a multiagent system is an autonomous intelligent entity that can
react to events and adapt to the environment. On the other hand, cooperation is a very
important process in multiagent systems because it associates agents in a collaborative
team to achieve the main objective of the system: reaching the overall goals. Agents
cooperate with other agents by sharing knowledge and exchanging useful information to
solve the problem. Therefore, description of cooperation protocols is a crucial requirement
for programmers to realize intelligent software multiagent systems.

The autonomous behavior of agent can be rigorously modeled using agent oriented
programming (AOP) [1], a natural successor of object oriented programming (OOP). In
AOP, an agent is modeled as an autonomous entity which listens to events from the
environment and from other agents and determines actions to do by itself. After having
the action in mind, the agent will perform the action to change the environment. This
cycle of sense-reasoning-act helps the agent to reach its goals and the cycle is called
“reasoning cycle”. Agent oriented programming allows one to precisely describe agents’
knowledge about the world and automatically generate reasoning cycle.

On the other hand, cooperation has become an important topic in multiagent system
research. There are many studies on cooperation model for agent such as the joint-
intentions model [2], teamwork [3] or distributed cooperation model ECM [4]. However,
there is a lack of effort for integrating cooperation into agent oriented programming.
This causes difficulties for programmers to create multiagent systems using agent oriented
programming languages and frameworks because it is tedious to describe agent’s reasoning
cycle separately from its interactions with other agents.

A general problem of existing cooperation models for autonomous agent is that they
do not pay attention to the distributed nature of multiagent system. Some cooperation
models such as joint-intentions model [2] or teamwork model [3] assume there are some

2 Chapter 1 Introduction

shared memory locations that agents can use to share their mental state and goals, but
this can not be simply assumed for distributed environments. Other models like the Group
Situation based Cooperation model [5] assume that there are some global coordinators
which can be a central to control all other agents. This makes the model error-prone and
creates bottleneck in a large-scale environment.

Distributed cooperation models such as ECM [4] do concentrate on the distributed re-
quirement of multiagent systems but they lack support for the autonomous computational
model of agents. They often model the interaction of processes in multiagent systems but
can not capture the autonomous actions of agents. Some models even defer the description
of agent’s reasoning cycle to the users.

The cooperation process of agents can be viewed as the process of synchronization and
passing messages between agents in order to coordinate and sharing knowledge about the
outside environment. Therefore, it is important to investigate the application of message
passing models into the description of cooperation process in multiagent systems. Yet
there is little attention on method for constructing cooperation, coordination protocols
from simple communication primitives (such as sending, receiving, broadcasting messages
among the agents).

These reasons have motivated me to study methods for realizing complex cooperation
protocols of agents from simple message passing primitives and integrating these methods
into agent oriented programming.

1.2 Contribution of this Work
The main contributions of this work are as follows:

• It proposes a new approach for abstraction and realization of sophisti-
cated agents’ cooperation protocols by using simple cooperation primi-
tives called collective operations.
Collective operations are operations that are simultaneously executed by many
agents, such as broadcasting messages among an agent group or finding some global
properties of the entire multiagent system. We show that using only these primi-
tives, many sophisticated cooperation protocols can be implemented. Using collec-
tive operations as cooperation primitives we were able to simplify the description
of several complex cooperation protocols in the FIPA’s agent interaction protocol
set. Many protocols can be straightforwardly mapped to collective operations in
an intuitive manner. More importantly, collective operations raise the abstraction
level of agent cooperation protocols and make the description of these protocols
well-structured. Therefore it is easier to debug and verify the behavior of the code
that implements the protocols.

• It proposes a new execution and communication model for agents in a
multiagent system to smoothly integrate cooperation into agent oriented
programming.
The integration of cooperation into agent oriented programming is not simple be-
cause in AOP, agent needs to be an autonomous, independent entity while coop-
eration involves sharing of knowledge and collaborating with each other. We have
designed and implemented a new agent oriented programming language named Yac-
cai which supports the description of collective operations as cooperation primitives.
Collective operations are implemented as language constructs of Yaccai. The un-
derlying communication model of the Yaccai runtime system provides full support
for message passing APIs while maintaining the autonomous computational model
of agents.

1.3 Organization of this Thesis 3

• It investigates the powerfulness of collective operations as cooperation
primitives and the ability to apply these operations in the description of
real-world multiagent systems.
We show that, global knowledge, a crucial element in realization of intelligent agents,
can be easily derived using collective operations. We have implemented the Vacuum
Cleaner simulation problem using collective operations in Yaccai and carried out
many experiments with different computational resources and problem settings.
The results confirmed that collective operations help the agents effectively cooperate
with each other to reach the overall goals.

Our final target is making the description of multiagent systems easier, more intuitive and
well-structured. We hope that the contributions of this work will create a paradigm shift
from agent oriented programming (AOP) to multiagent oriented programming (MAOP).

1.3 Organization of this Thesis
The rest of this thesis is organized as follows. Chapter 2 provides some fundamental
concepts about multiagent systems, agent oriented programming and agent cooperation
protocols. We review related previous work in agent oriented programming, multiagent
cooperation and agent oriented approach for grid applications in Chapter 3. We present
our first proposal about method for modeling agent cooperation protocols using collective
operations in Chapter 4. We also demonstrate the expressiveness of our model using many
examples right after the proposal in the same chapter. Then, in Chapter 5, we explain
our second proposal about communication and execution model for agents to support the
syntax and semantics of collective operations as shown in Chapter 4. Chapter 6 evaluates
our proposals from many aspects. Finally, in Chapter 7, we give the conclusion and discuss
about future research direction.

1.4 Font face convention in this Thesis
In this thesis, collective operation names are written in typewriter type font. For example,
Reduce, Bcast or Gather are collective operation names.

4

Chapter 2

Multiagent systems and agent

cooperation protocols

In this chapter, we provide fundamental concepts of multiagent system, agent oriented
programming and agents’ cooperation. These concepts are essential for understanding of
this thesis.

2.1 Multiagent systems
As introduced in Chapter 1, a multiagent system (MAS) is a system that consists of
many autonomous intelligent agents. Each agent can be any entity that has the ability
of reasoning about current situation of the environment and taking appropriate actions.
Examples of agents contain human beings (a kind of perfect autonomous intelligent agent),
robots and intelligent software programs.

Fig. 2.1. A software multiagent system

This research focuses on software agent, that is, software program which has intelligent
reasoning mechanism and can function in a complex computational environment such as
computer cluster or grid. Multiple programs (processes of execution, agents) that interact
by communicating or synchronizing with each other to solve some common problems form
a software multiagent system. The term “multiagent system” mentioned in this thesis has

2.2 Agent oriented programming 5

this meaning except when explicitly specified. A multiagent system that contains four
agents is depicted in Figure 2.1.

2.2 Agent oriented programming
Yoav Shoham has proposed a new programming paradigm called agent oriented program-
ming (AOP) [1] for description of autonomous agents. In this programming paradigm,
each agent is considered as an object (or actor in Actor model [6]) whose state con-
tains components such as beliefs (belief about the world, the environment, about itself
and about other agents), desires (goals), capabilities and intentions. An agent rationally
maintains the consistency between its beliefs by itself and therefore it is said to be “au-
tonomous”. As illustrated in Figure 2.2, an agent has knowledge about the world (the
environment) as its belief and the goal to perform as its desire. To perform a goal, an
agent needs some plans (capabilities) as the recipe for achieving the goal and committed
plans are called intentions. Belief, desire and intention (BDI) form the state of the agent
(which is called mental state) and the cycle of sense-reasoning-act (as shown in Figure 2.2)
is the “reasoning cycle” of the agent.

Fig. 2.2. The agent oriented programming model

An agent oriented programming language allows one to precisely model agent’s mental
state using its language constructs and the language runtime system automatically gen-
erates reasoning cycle.

2.3 Agent cooperation protocols
Cooperation is known as the process of synchronization and sharing knowledge to achieve
a goal or to reach an agreement between agents in a multiagent system (see Figure 2.1).
Cooperation is a crucial process in multiagent system because without cooperation the
system is simply a set of separated agents and has no ability of collaborating to reach
the goal. The protocols that describe cooperation process between agents are called
cooperation protocols. There are many standard agent cooperation protocols (such as the
FIPA Contract Net Protocol), but many non-standard or customized protocols also exist.
Therefore, it is required that a multiagent platform must provide the ability of realizing
an arbitrary cooperation protocols.

There are two important aspects of a cooperation process, namely, data movement
pattern and computation pattern. Data movement refers to the communication process
in the cooperation protocol while computation pattern refers to the actual computation
functions that are executed to process the communicated data. This research mainly

6 Chapter 2 Multiagent systems and agent cooperation protocols

deals with the problem of abstracting communication patterns in multiagent systems. In
addition, it also provides mechanism for describing some complex computation patterns
(e.g., reduction).

7

Chapter 3

Related work

3.1 Agent oriented programming languages
Many agent oriented programming languages have been proposed, such as AgentS-
peak(L) [7], Golog/ConGolog [8], 3APL [9, 10, 11] or BOID [12]... These languages focus
on formal model of agent, they provide formal semantics and support for model checking,
proof of correctness of the system. Most of these languages base on BDI logic [13] as
they provide tools for query belief base, reasoning about goals and plans. Applications
of these languages are generally to formal problems, to reasoning about the behaviors of
agent rather than to real world problems. They don’t provide structures for describing
the society of agents, hence it is impractical to use these languages to develop multiagent
systems.

Another group of agent frameworks have been designed for real-world applications [14,
15, 16]. These frameworks are more practical than frameworks for formal reasoning of
agent systems. They support many program constructs to easily describe agent behavior.
Partly because of the extended constructs, these languages are lack of the agent oriented
aspects, the formal BDI model for reasoning about agent behavior. The SPARK agent
framework [17] is an attempt to combine both practical and formal aspects to an agent
programming language. Still, there is little support for agent organization in these lan-
guages. Developing a multiagent system with these languages is difficult, because agents
usually need communication, synchronization and they form organizations (groups) in the
system.

One of the first attempt to create a language for multiagent systems is the 2APL pro-
gramming language by Dastani et al. [18, 19]. It provides constructs for describing sets of
agents that form a multiagent system as well as many intellectual constructs for modeling
mental state of individual agents. Moreover, 2APL supports the communication between
agents by allowing the specification of “communication actions” (send, receive, . . .) and
sharing environments among agents. However, there are some disadvantages which may
make the development of multiagent systems in 2APL tedious. First, 2APL actually
requires MAS to be described in 2 different languages (although these languages form a
unique language called “2APL”). One language is for description of individual agents with
many intellectual constructs for modeling agent’s mental state. Another language is for
description of the entire multiagent system. Despite the fact that these 2 languages can
be recognized by a unique interpreter, programmers must use completely different con-
structs for the description of multiagent systems and of individual agents: the language
for creating multiagent system is very simple and lacks support for dynamic generation
of agent’s groups (in fact, this language is nearly the same as a simple shell-scripting lan-
guage that forks many agents simultaneously). Second, the communication patterns that
2APL supports are very simple (i.e., peer-to-peer) and there is no support for complex

8 Chapter 3 Related work

computational patterns (e.g., reduction or gathering) (although the agents may share their
computation results in a shared variable of an environment). Our language is similar to
2APL because it allows the description of the entire MAS as well as individual agents but
it does not require 2 different languages (common constructs such as for-loop or while-loop
can be used everywhere) and it allows the dynamic creation of agents as well as agent
groups. More importantly, the set of powerful cooperation primitives (collective opera-
tions) integrated in our language supports the description of complex communication and
computation patterns.

Thus, existing agent oriented programming languages focus on the internal represen-
tation of agent, that is, how to make an agent to be autonomous, how to express the
mental state (the intra-agent aspects) of an agent efficiently and easily using constructs
provided by the language. They do not pay enough attention to the inter-agent aspects
(i.e., communication and cooperation between agents) and abstraction of cooperation be-
tween agents. This causes many difficulties in realizing multiagent systems using these
languages because cooperation is a very important requirement in MAS. Different from
these languages, our cooperation model and AOP language focus not only on the au-
tonomy (the intra-agent aspects) but also on the cooperation of agents (the inter-agent
aspects). We do provide constructs for modeling mental state of agent but simultaneously
support the communication and cooperation between agents in the system. Therefore,
our language and cooperation model are appropriate for developing multiagent systems.

3.2 Multiagent cooperation models
Cooperation model is one of the most important topic in multiagent system research.
There are many attempts, such as KQML [20] or FIPA ACL [21], to standardize the
format of messages exchanged by agents when agents participate in a cooperation proto-
col. Unfortunately, these frameworks only show a method for improving interoperability
between multiagent systems and they simply do not concern about the methodology for
implementation of cooperation protocols.

Cooperation models such as joint-intentions model [2] or teamwork [3, 22] allow the
description of global goal for the entire multiagent system and coordination scheme is
automatically derived from the team’s goal. But it is difficult to ensure the autonomy of
each agent because all agents have the same goal and mental state.

Michael Schumacher proposed a model for inter-agent coordination, called ECM [4]
and a programming language to specify agent hierarchy. Agents participate in many
agent societies, called “blops”. Each blop is a group of agents, in which agents can easily
communicate with each other and even broadcast messages when they want. However,
ECM and its languages do not support the description of mental state of agent, agent
itself needed to be specified by another programming language. Our model is similar to
ECM in the way of modeling agent groups and supporting for broadcast operation, but it
adds extra abstraction to the communication pattern of agents using collective operations.
Moreover, by introducing collective operations into the cooperation model, we were able to
abstract not only communication patterns, but also sophisticated computational patterns
(e.g., reduction, gathering of data, . . .).

Recently, there are some cooperation models based on situation calculus [23, 5]. For
instance, the requirement/service [23] model allows an agent to send request to another
agent (service agent) and the service agent will serve the request. However, it is dif-
ficult to describe cooperation schemes with complex actions to synthesize the solution
from sub-problem solutions since the cooperation here is restricted in the request and re-
sponse actions. The Group situation model [5] defines cooperative group with situations

3.3 Agent-oriented methodologies for grid applications 9

(state of the group at a time) and allows specifying cooperation process for the group.
Cooperation process describes the method to achieve the goal situation (i.e., what each
agent needs to do). The model is intuitive for describing cooperative systems but it is
difficult to generate real execution code from the model, especially code for distributed
multiagent systems because the cooperation process is a centralized process which needs
to be executed by a master agent (when the cooperation process failed, the system will
not function). Our model guarantees that the cooperation process is decentralized which
promises the system’s fault tolerance. Moreover, arbitrary complex cooperation protocols
can be described in our language because the wide range of cooperative actions can be
specified by collective operation primitives.

3.3 Agent-oriented methodologies for grid applications
Agent technology has been applied to grid computing to efficiently manage computa-
tional resources [24, 25, 26], cope with complex problems such as fault tolerance [27, 28]
and support complex inter-process communication [29]. Moreover, many agent-oriented
software engineering methodologies have been proposed and used for modeling grid ap-
plications [24, 30]. These frameworks are related to our work in the sense that they make
the implementation of distributed multiagent systems easier.

MAGE [24] and CoordAgent [25] use the autonomous nature and mobility of agent to
efficiently utilize computing resources of grid environment. Unfortunately they have no
mechanism to support the realization of communication patterns of agents. The users
(programmers) have to create communication schemes from scratch, or they have to use
classical methods (C/C++ native programs) to describe their problems. Thus, these
frameworks are only a wrapper over the classical programs to adapt to grid environment.
Nothing about agent’s autonomy and cooperation is utilized to make the problem simpler
to solve in these frameworks.

Agent-oriented modeling frameworks for analysis and design of grid applications as
described in [30] or [31] provide methodologies to model hierarchies of agents and agent
groups, but like the above frameworks, they do not pay attention to agents’ cooperation
and communication.

The Concordia framework [29] proposed a method for modeling distributed multiagent
systems that supports collaboration between agents. Many communication and compu-
tation patterns that are supported by our system are also available in Concordia. For
instance, in Concordia, an agent can freely broadcast messages to a group of agents. Con-
cordia also supports the master-slave distributed problem solving technique. However,
Concordia is not flexible enough to model an arbitrary problem using multiagent system
because its functions are restricted to an inadequate communication primitive set (such
as broadcast) as well as computational patterns (like master-slave distributed problem
solving). Our framework allows the realization of an arbitrary cooperation protocol by
providing a powerful cooperation primitive set (as described in the next section). Thus,
our proposal is flexible and generalized for modeling sophisticated cooperation problems
using multiagent system.

10

Chapter 4

Abstraction of agent cooperation

protocols

In this chapter, we present our first proposal: using collective operations as cooperation
primitives for abstraction of agent’s cooperation protocols. First, we show basic idea
to make the description of complex cooperation protocols easier and well-structured by
encapsulating communication patterns in collective operation, a concept in parallel dis-
tributed programming. Then, we describe essential collective operations that are very
important for description of agent’s cooperation protocols. Next, we discuss in detail
about method for creating cooperation protocols from these cooperation primitives. Fi-
nally, we illustrate the powerfulness of the proposed cooperation primitives by realizing
many sophisticated cooperation protocols using collective operations.

4.1 Building blocks for cooperation
Cooperation in multiagent systems involves the sharing of mental state (belief, desire,
intention) of agent and exchanging solutions of sub-problems. The main issues one has
to cope with to build an intelligent cooperation protocol include division of the goal into
smaller tasks, synthesis of solution from sub-problem results, coordination of agents for
avoiding unhelpful interactions and maximizing effectiveness [32]. To make the above
issues easier and more intuitive, we propose collective operations as building blocks for
realization of cooperation schemes. Collective operation is a concept in the Message
Passing Interface (MPI) [33], a parallel distributed programming interface, in which
many processes simultaneously participate into the execution of some procedure. For
example, broadcasting message among agents in a group is a collective operation where
the initiating agent may send message to its neighbors and then these neighbors may
forward the message to other agents in the group until all agents received the message.
MPI defines many collective operations such as Bcast (broadcast), Gather, Scatter,
Reduce . . . as tools for synchronization and coordination of processes/threads of execution.
The processes that participate into the collective operations must be in a same group
called a “communicator” in MPI (thus, communicator is an agent group in our model).
Since collective operations are used to describe the synchronization and coordination of
processes in distributed parallel programs, they are suitable for modeling cooperation of
agents.

There are two specific cooperative problem-solving activities that are likely to be
present: task sharing and result sharing [32]. Task sharing takes place when a problem is
decomposed into smaller sub-problems and allocated to different agents. Result sharing
involves agents sharing information relevant to their sub-problems. Collective operations

4.1 Building blocks for cooperation 11

fit very well to the description of these activities. For example, gathering data from all
agents (the Gather operation) can be applied for collecting result of sub-problems to
an agent. On the other hand, the Scatter operation (scattering data to all processes
in a group) is appropriate for task sharing because after decomposing the problem into
smaller tasks, they need to be delivered to agents which can solve the tasks. We will
discuss detail about algorithm for constructing cooperation schemes using collective
operations in Section 4.3.

Programming with collective operations is much simpler than with only point-to-point
operations because collective operations provide much functionality in just a function call.
This fact was revealed in parallel programming in the past [34], but in this thesis, it is
the first time collective operations are proposed to be cooperation primitives for realiz-
ing agent cooperation protocols. Actually, implementing cooperation protocols between
agents is similar to programming parallel distributed program by message passing. There-
fore, our proposal is a natural application of message passing model into agent oriented
programming model. However, there are some challenges that we need to overcome to
maintain the autonomous computational model of agent while integrating these collective
operations into AOP. In message passing models like MPI, collective operations must be
invoked in parallel by all processes in the same group (communicator). In agent oriented
programming, this should be avoided because each agent is an autonomous independent
process and it is difficult for programmers if they have to invoke collective operations in
many agents as the same time. Our model allows the invocation of collective operations
by just one agent, other agents will automatically participate into the operations.

There are many advantages when we use collective operations to describe cooperation
protocols:

• The description of cooperation protocol will be well-structured with collective op-
erations because collective operations provide much more functionality than low
level send/receive primitives do. The code written with collective operations will
be more intuitive, easier to debug and simpler for verification because the relation
between collective operation with low level send/receive primitives is similar to the
relation of goto statement and programming constructs in structured programming
(e.g., if-then, loop constructs, . . .) [34].

• Using collective operations, global knowledge of the entire multiagent system - a
crucial element for intelligent multiagent systems - can be easily derived. Global
knowledge is knowledge that involves the entire multiagent system, for instance,
the minimum value of a particular property of agents. Data that is distributed
across many agents may be considered as global knowledge because gathering of
the data involves communication of many agents. Collective operations fit very
well for collecting of this kind of data because they are designed for distributed
programming. We will give some examples about deriving global knowledge in the
following section.

• Cooperation protocols that are described using collective operations can be easily
optimized and therefore can achieve high performance than the implementation
not using collective operations. This is because collective operations can be imple-
mented as language constructs or in library by experts that have good understand-
ing about the underlying system. Furthermore, some collective operations (such as
broadcast) may have supports from hardware [34].

Therefore, utilizing collective operations for description of cooperation protocols between
agents may lead to an extraordinary improvement in the quality of the protocols’ imple-
mentation.

12 Chapter 4 Abstraction of agent cooperation protocols

4.2 Set of essential collective operations
In this section, we describe the set of collective operations that are essential for imple-
menting cooperation protocols between agents. First, we give an overview of the set of
collective operations to be used as cooperation primitives in our model. Then we discuss
about the reason for including these collective operations in detail.

4.2.1 Overview

Collective operations that are likely to be used for building cooperation protocols include
Barrier, Bcast (Broadcast), Reduce, Gather and Scatter and are briefly described in
Table 4.1 and Figure 4.1. This set of collective operations is a part of the Message Passing
Interface (MPI) [33], a popular parallel distributed programming library. In addition
to these collective operations, we also support send -receive (point-to-point) operations
because as mentioned by Gorlatch, Send-Receive are “considered harmful”, but they are
still needed in some situations, just like goto has not gone away despite the success of
structured programming [34].

Table. 4.1. Collective operations

Operation Meaning Example

Barrier Synchronizing all agents in the communi-
cator

comm.Barrier(barrier name);

Bcast Broadcasting message msg to all agents in
comm.

comm.Bcast(msg);

Reduce Evaluate expression at each agent and
combine the results by applying operator
to an accumulator value and each element
in turn

comm.Reduce(expression, operator);

Gather Evaluate expression at each agent then
gather the results to an agent

comm.Gather(expression);

Scatter Scatter the array of messages to all agents
in comm

comm.Scatter(array of msg);

We use the concept of “communicator” in MPI to model agent group. An agent can
participate into a communicator by invoking a method (or calling a function) like this:

comm = GetCommunicator(comm name, msg listener);
where comm name is a string which is used to identify the communicator (the result
of this call is a reference to the communicator object (“comm”), upon which, collective
operations can be invoked). Other agents can join this communicator by invoking the
above method with the same communicator name. The second parameter, msg listener
is the user defined plan (procedure) for processing messages when there are messages
from other agents in the communicator that need to be delivered to the agent (it is a
callback function which is called by the underlying system). After getting reference to a
communicator (the variable “comm” in the above code), an agent can invoke collective
operations on that communicator as shown in Table 4.1. By this way, an agent can
dynamically create groups of agents (by creating communicators) or join to other groups.
This is an essential requirement for modeling complex agent societies.

Collective operations in normal parallel distributed programming library such as
MPI [33] must be invoked in parallel by all processes that are participating in the oper-
ation. This requirement ensures the efficiency for the execution of collective operations

4.2 Set of essential collective operations 13

(a) Barrier (b) Broadcast (c) Reduce

(d) Gather (e) Scatter

Fig. 4.1. Essential collective operations

but it causes difficulty in maintaining the autonomy of each process since it requires all
processes invoke the operation at the same time. The proposed system allows collective
operations to be invoked by just one agent and other agents will automatically participate
in the operations.

There are three types of collective operations in our model: operation for querying data,
operation for informing something and operation for barrier synchronization. Operations
for querying data are Reduce and Gather operations. In these operations, the invoking
agent wants to know some data from target agents, it requires the target agents to evaluate
an expression (specified as the parameter for the operation) and supply the result as
parameter for some operator. The action that the target agents take to response to
this kind of request is evaluating the expression and this is automatically done by the
framework. The programmers do not need to concern about the action of target agents
for this kind of operation. The second type of operation (Barrier operation) is used
to synchronize all agents in a group. The programmers only need to invoke the barrier
method with an identical barrier name to synchronize all agents in a group, the actual
synchronization is done by the underlying system. The last type of operation is operation
for informing some events or knowledge to other agents. Bcast, Scatter operations are
in this group. In these operations, the message (data) from the invoking agent will be
passed to the method msg listener of the target agents and it is the responsibility of
the programmers to specify which action should be done when the message arrived. By
describing msg listener method, agents with reactive reasoning capability can be easily
created (i.e., the agents can react to some events that are received from other agents or
from the environment).

An agent can leave from a communicator by invoking the method “Leave” on that
communicator:

comm.Leave();
Messages in the communicator will not be passed to the message listener any more after
the agent leaved the communicator (even though, the agent may participate in the message
passing process of the execution environment and act as a router to forward messages to

14 Chapter 4 Abstraction of agent cooperation protocols

another agent in the system without awareness of the programmer). Therefore, an agent
can freely participate to and leave from a communicator. This provides the programmers
the ability to dynamically create/dissolve agent groups and makes the multiagent systems’
modeling process easier.

4.2.2 Barrier synchronization

The simplest operation in the operation set is Barrier operation, it is illustrated in
Figure 4.1(a). It is an essential operation for agent cooperation protocols because in
many protocols we need to synchronize the action of agents. For example, in cooperative
distributed problem solving, in which many slave (worker) agents solve subproblems and
report the result to a master agent for synthesizing the final solution, barrier can be used
to wait for slave agents to finish the solution of subproblems. The master agent invokes
the barrier operation with a specified barrier name and workers invoke the operation with
the same barrier name to notify that they finished the assigned task.
In our model, barrier operation can be invoke as follow:

comm.Barrier(barrier name);
where “comm” is a reference to a communicator and barrier name is a string for identifi-
cation of the barrier operations (it needs to be globally understood by all agents).

4.2.3 Broadcast and scatter

The Bcast (broadcast) and Scatter operations are used to distribute data across many
agents in just one function call (as illustrated in Figure 4.1(b)(e)). These are very im-
portant operations for cooperation protocols because cooperation often involves sharing
knowledge and exchanging messages. By invoking these operations, the invoked agent
can “push” data to other agents (e.g., informing some useful information). The syntax of
broadcast and scatter operations is described in Table 4.1.

Note that the syntax and semantics of these operations in our model are different
from those in MPI. In MPI, an agent can not invoke broadcast operation alone, the
programmers need to invoke the operations in parallel in all agents. In the proposed
model, these operations are invoked by just one agent (the agent who wants to push data
to other agents). The response action of target agents (the agents that data arrives) can
be various because it depends on the msg listener method specified by the programmers.
This makes our model more flexible and expressive for describing cooperation protocols.

4.2.4 Reduce and gather

The last type of collective operation is operation for querying data from other agents.
These are Reduce and Gather operations and are illustrated in Figure 4.1(c)(e). These
operations make the description of cooperation protocols much more easier in many cases
because they abstract a complex communication and computation pattern.

A typical pattern of agent cooperation protocol is the pattern in which several agents
contribute their data (information, knowledge, message, . . .) to a decision process, the
final decision will be determined by a coordinator. This pattern is precisely modeled by
operations like Reduce or Gather. For example, in an auction protocol, where several
agents (bidders) propose their price and a coordinator (the auctioneer) decides the final
winner based on the proposed prices, Reduce operation can be very effectively used: the
auctioneer uses reduction on prices with MAX operator to determine the winner. Other
protocols such as FIPA’s Contract Net Protocol or Recruiting Interaction Protocol can
be easily described using Reduce/Gather operations.

4.3 Building cooperation protocols from collective operations 15

The syntax of reduce operation in our model is slightly different from MPI:
comm.Reduce(expression, OP);

where OP is the operator to be applied and expression is a string representation of an
expression to be evaluated at each agent to supply data (parameters) for the OP operator.
Since the operation is invoked locally by an agent, expression needs to be transmitted to
all agents before the actual evaluation process occurs. That is the reason why expression
is normally wrapped in the operator “@{}”, the operator for converting an arbitrary ex-
pression into a literal string (to be sent by the underlying network) in the Yaccai language
described in the next chapter. The semantics of the expression in gather operation is the
same at the expression in Reduce operation.

Unlike in MPI, the expression in our model is a kind of code for mobility. The code
for expression actually travels from one agent (the invoker) to other agents (the target
agents). This kind of code mobility simplifies the data querying process and therefore is
important for cooperation protocols.
Reduce, Gather operations are very appropriate for deriving global knowledge of a

multiagent system as stated in Section 4.1. For example, a Vacuum Cleaner agent can
know how many agents are in idle state by invoking the following reduce operation:

comm.Reduce(@{(belief query idle)[0]}, @{Sum});
where “Sum” is an operator of 2 operands which returns the sum of these operands. The
belief-base query expression is evaluated at each agent and returns a collection (contains
only one element) that is 1 if the agent in idle state and 0 otherwise. The operator “Sum”
is applied to the result set in a particular order (the order of the application depends on
the reduce algorithm, such as tree-like or linear algorithm).
Another method to achieve the same goal is using the gather operation to gather all idle
state of other agents:

comm.Gather(@{(belief query idle)[0]});
The gather operation returns a collection contains values representing idle state of all
agents in the communicator “comm”.

4.3 Building cooperation protocols from collective operations
As stated in Section 4.1, cooperation of agents may be built from collective operations.
Each collective operation is a building block for constructing cooperation schemes. In this
section, we show how the process of reaching agreement and cooperation can be described
by using collective operations as primitive actions.

4.3.1 Reaching agreement

procedure auction() {
bidders = GetCommunicator(“bidders”);
bidders.Bcast(proposal);
winner = bidders.Reduce(@{price}, @{MAX ID});
bidders.Send(winner, inform win);
bidders.Recv(winner, confirmation);

}
Fig. 4.2. Implementation of an auction protocol by collective operations

As stated by Wooldridge, “the ability to reach agreements (without a third party dic-
tating terms) is a fundamental capability of intelligent autonomous agents - without this

16 Chapter 4 Abstraction of agent cooperation protocols

capability, we would surely find it impossible to function in society” [32], reaching agree-
ment is a very important process in multiagent systems. Therefore, the ability of building
protocols for reaching agreements is very important for every multiagent system platform.

In our model, many-to-one negotiation is straightforwardly implemented by
Bcast/Scatter and Reduce/Gather operations. For example, in the auction sce-
nario, the auctioneer (the agent who wants to sell goods) uses Bcast operation to
broadcast the proposal to all bidders (the collection of agents that want to buy the
goods), then it can use Reduce or Gather operation to collect the bidding result from the
bidders. In English auctions, the auctioneer may want to know the agent that bids the
highest price to allocate goods to that bidder (first-price auction). In this case, it can
directly use Reduce operation on the agent group with the “MAX ID” operator:

winner = bidders.Reduce(@{price}, @{MAX ID});
to identify the winner (the expression inside the “@{}” operator is evaluated at each
agent in our language). Figure 4.2 shows the pseudo-code for the auction scenario using
collective operations.

Many-to-many negotiation can also be done with collective operations such as
AllGather, AllReduce and AllScatter (these operations are defined in MPI), but this
work has not investigated them elaborately, this should be done in the future.

4.3.2 Cooperation using collective operations

The process of cooperative distributed problem solving contains of 3 stages: 1) Problem
decomposition, 2) Sub-problems solution and 3) Solution synthesis [32]. Sub-problem
solution is an issue related to the specific problem that can only be solved when we know
about the domain of the problem. For problem decomposition and solution synthesis, we
can use collective operations to achieve many complex strategies. For instance, a master
agent can distribute tasks to slaves by putting tasks into an array and invoking Scatter
operation. Each agent has an integer identifier (called “rank”) so the master can use this
identifier to arrange the task array such that the specified agent will receive the desired
job (when scattering an array of data, we send each element to an agent in order of their
ranks). This strategy is useful when the master has known the capability of each agent
so it can assign appropriate task for each agent.

Even when the master does not know the capabilities of each agent, it may use Bcast
and Gather operations to determine which task should be assigned to which agent. It
simply broadcasts each task to all agents and ask the agent for the ability of solving the
task (by using Gather operation). When it has response from all agents, it can assign
task as desired.

Solution synthesis (result sharing) can be achieved by Reduce/Gather operation. The
Gather operation is used when the solution of the problem directly equals to the set of
sub-problem solutions (for example in QuickSort, the sorted list is the concatenation of
sublists (in an appropriate order)). The Reduce operation provides a powerful function of
deriving global solution from sub-problem solutions. For instance, in the auction problem
above, the winner may be easily found by Reduce operation with “MAX ID” operator.
Another example, by using SUM operator the master can directly find the distance of the
route that is synthesized from many sub-routes that slave agents found.

The Barrier operator is useful when the master needs to wait until all agents have
completed solving the sub-problem. In this case, the master invokes barrier operation by
providing a barrier name (identifier), other agents also invoke the operation with the same
barrier name to inform the master about the completion of sub-problem solution.
The skeleton of cooperative problem solving implementation by collective operations is
provided in Figure 4.3. In the figure, “Solvable” is a hash table that maps a task into an

4.4 Example implementation of some cooperation protocols 17

procedure solve(){
for each task in TaskSet {

workers.Bcast(task);
Solvable[task] = workers.Gather(@{is solvable});

}
task array = create task assignment

array from Solvable;
workers.Scatter(task array);
solution = workers.Reduce(@{result}, OPERATOR);

}

Fig. 4.3. Cooperative problem solving using collective operations.

array of boolean values whose element i is true if the agent with rank i can solve the task.

4.4 Example implementation of some cooperation protocols
In this section, we show that many complex cooperation protocols in the set of FIPA
Agent Interaction Protocols (FIPA-IP) [35] can be easily and intuitively described using
collective operations.

4.4.1 FIPA Interaction Protocols (FIPA-IP)

FIPA Interaction Protocols (IPs) are the agent cooperation protocol set proposed by the
Foundations of Intelligent Physical Agents (FIPA) *1 and has been approved as IEEE
standard. There are 11 protocols in this set *2, including 9 standard-status protocols
and 2 experimental-status protocols [35]. These protocols deal with pre-agreed message
exchange protocols for FIPA Agent Communication Language (FIPA ACL) messages and
play an important role in the development of multiagent systems. These protocols range
from simple protocols for message exchange (such as FIPA Request Interaction Protocol)
to very complex protocols that involve sophisticated computation and communication pat-
terns for reaching agreements (e.g., Auction Protocols, Contract Net Protocol, Recruiting
Interaction Protocol, . . .).

In this work, we propose to implement FIPA IPs by using collective operations to obtain
well-structured and efficient cooperation protocols. We have pseudo-implemented all of
these 11 protocols by collective operations, many of the implementations lead to more
readable and intuitive code.

The following subsections show some example implementations of FIPA IPs by collective
operations in pseudo-code, the other protocols that are not shown here are available in
the Appendix A.

4.4.2 Contract Net Protocol (CNET)

FIPA Contract Net Interaction Protocol (CNET) [36] is a famous protocol for multiagent
systems. In this protocol, an agent (the Initiator) takes the role of the manager which
wishes to have some task performed by one or more other agents (the Participants) and

*1 http://www.fipa.org
*2 As of January 2009

18 Chapter 4 Abstraction of agent cooperation protocols

further wishes to optimize the cost to perform the task (the price). The representation of
this protocol is given in Figure 4.4 which is based on extensions to UML1.x [37].

Fig. 4.4. FIPA Contract Net Interaction Protocol (CNET)

Using collective operations, this protocol can be easily described. First, the Initiator
broadcasts its task to all participants using Bcast operation. When received the task from
the Initiator, each participant decides whether it should propose a price or not based on
its capability. If the participant can not accomplish the task, it should set its price to
infinity. The Initiator then uses Reduce operation on all proposed prices to determine the
best price (in this case, the minimum price). The pseudo-code for an implementation of
this protocol using collective operations is shown in Figure 4.5.

As shown in the code in Figure 4.5, the implementation of FIPA CNET is very simple
and intuitive to understand because of two reasons: 1) Bcast operation simplifies the
announcement of the task (therefore, the Initiator does not need to repeat sending the
task), 2) Reduce operation abstracts the algorithm for finding best price so the Initiator

4.4 Example implementation of some cooperation protocols 19

// Initiator1

plan cnet(task)2

comm = get communicator that contains all participants ;3

comm.Bcast(CFP (task, my id));4

winner id = comm.Reduce(@{belief query proposal}, @{MIN ID});5

comm.Send(winner id, winning inform);6

end plan7

8

// Participants9

plan processMsg(msg)10

if msg is a CFP then11

initiator, task = get initiator and task from msg;12

if can perform?(task, initiator) then13

proposal = evaluateTask(task, initiator);14

else15

proposal = INFINITY;16

end if17

add proposal to belief-base;18

elseif msg is a winning inform then19

task result = perform task(task);20

add task result to belief-base ;21

end if22

end plan23

Fig. 4.5. Implementation of FIPA CNET protocol using collective operations

does not need to concern about how to gather all prices from participants and how to find
the minimum value of these prices. Thus, in this example, collective operations abstract
not only communication pattern but also computation pattern. The expression “price”
that is evaluated remotely at each participant simplifies the data collecting process of the
Initiator.

4.4.3 FIPA Recruiting Interaction Protocol

FIPA Recruiting Interaction Protocol [38] is a complicated protocol which is designed to
support recruiting interactions in mediated systems and in multiagent systems. In this
protocol, an agent (the Initiator) requests the Recruiter agent to find agents that can
solve the Initiator’s task. The recruiter (a form of broker) agent then finds and assigns
the task to appropriate agents and requests these agents to forward result of the task to
designated target (the target is determined by the Initiator). The protocol is depicted in
Figure 4.6.

The implementation strategy for FIPA Recruiting protocol is shown in Figure 4.7. When
received proxy request from the Initiator, the Recruiter finds appropriate agents (the
agents that can potentially solve part of the task - the “service agents”) and broadcasts
the task to these service agents, as shown in Figure 4.7(a). The service agents that can
really contribute to the solution of the task perform the requested actions and participate
into a new communicator (“comm1”), which is created by the Receiver agent (the agent
that will receive the result of the task). The Receiver then performs a Gather or Reduce
operation in the newly created communicator (“comm1”) to aggregate all results. The
pseudo-code for this progress is shown in Appendix A.

20 Chapter 4 Abstraction of agent cooperation protocols

Fig. 4.6. FIPA Recruiting Interaction Protocol

(a) Initial state (b) After determination of service
agents

Fig. 4.7. Implementation of FIPA Recruiting protocol.
(R denotes the Recruiter, I: Initiator, S: service agent, Rcv: Receiver)

4.4 Example implementation of some cooperation protocols 21

By dynamically creating communicators, we can easily perform some filter functions on
the set of agents (e.g., the communicator “comm1” in Figure 4.7 is used to get all agents
that contributed something to the task achievement process). Therefore, the description
of complicated FIPA Recruiting protocol is drastically simpler.

22

Chapter 5

Communication and execution model

In this chapter, we present our second proposal: a new execution and communication
model of agent which allows the implementation of collective operations as well as
smoothly integrating cooperation primitives into agent oriented programming model.
First, we overview the layered model for each agent and discuss the advantages of this
model. Then, we present the programming language named Yaccai that we have designed
and implemented to support the execution of the proposed model. We briefly describe
syntax of the language and the runtime environment we have implemented to support
the execution of multiagent systems written in Yaccai.

5.1 Agent execution and communication model

5.1.1 Communication model

As mentioned in Section 4.1, the integration of cooperation primitives into agent oriented
programming is not easy because agents need to be autonomous and independent from
other agents while collective operations involve simultaneous execution of some code by all
agents. To maintain the autonomy of agents, we need to ensure that the programmers can
describe each agent independently from others. Therefore, collective operations may be
invoked locally by just one agent, but other agents need to participate into the operations.

In our model, we allow collective operations to be invoked by just one agent locally.
This semantics of collective operations is different from semantics in MPI because in MPI,
collective operations can not be invoked locally by one agent, they need to be invoked
by all agents in parallel. The parallel invocation of collective operations (in MPI) allows
these operations to be easily and efficiently implemented. However, it does not guarantee
the autonomous computational model of agent, because all agents must participate into
the invocation (despite the fact that the final result can be aggregated to just one agent!).
The implementation that supports the semantics in our model is not trivial because a
locally invoked operation must then be evaluated globally by all agents.

To accomplish this goal, we propose a new communication model for agents, as shown in
Figure 5.1. In this model, each agent is divided into two layers: the agent reasoning layer
and the message passing layer. The agent reasoning layer (the upper part in Figure 5.1)
contains user’s code for reasoning process of the agent. The programmers only need to
write code for this layer to reflect agent’s capabilities. On the other hand, the message
passing layer (the lower part in Figure 5.1) contains code for message passing and routing.
This code is provided by the runtime system and programmers do not need to worry about
this part. This communication model can be viewed as the abstraction of the model in MPI
as it hides the message passing layer of MPI under the agent reasoning layer. In MPI, an
agent (the receiver) must actively participate into a collective operation that is initiated by

5.1 Agent execution and communication model 23

Fig. 5.1. Communication model for a multiagent system.
(the circle “ai” denotes the reasoning layer, the circle “mi” represents the mes-
sage passing layer of agent i)

another agent (even the result of the operation is not related to the desires of the receiver).
Thus, an agent needs to pay attention to something that is neither related to its goals
(or at least, to it long-term goal) nor in its intentions. This not only causes waste for the
effort of programmers, but also is incompatible to the autonomous computational model of
agent (in which agents independently and autonomously taking actions). By adding this
abstraction, the proposed model allows an agent to passively participate into collective
operations. The receivers (the agents that need to participate into the operations, not the
invoker) simply listen for message from the invoker. The invoker (initiator of a collective
operation) sends messages to the receivers to inform about the operation and the data
that the operation needs. The receivers can then process the request in background, and
therefore, the agent reasoning code of an agent is not disturbed by collective operations
that are invoked by other agents. This leads to the ability to invoke collective operations
locally at an agent. Table 5.1 gives a comparison between the proposed model and MPI.

Table. 5.1. Differences between the proposed model and MPI

MPI Proposed model

Code All processes have same code Can be different for
each agent

Collective operations syntax Invoked by all processes
(same code)

Invoked by an agent

Can leave from a communicator No Yes
Participate into collective opera-
tions

Actively Passively

Reasoning code needs to handle col-
lective operations?

Yes No

The separation of an agent into 2 layers leads to some advantages. First, it ensures the
autonomy of agent because agent’s reasoning code can be executed independently in one
thread of execution while message passing can be executed in other threads. Thus, the
execution of agent’s reasoning cycle is not mixed with the execution of message passing,
except when explicitly stated by the programmers (by invoking communication primitives
to allow an agent to perform the “communication actions”). Second, it supports the im-

24 Chapter 5 Communication and execution model

plementation of collective operations with different semantics from other message passing
models (as described in the previous paragraph). Finally, it allows the optimization of
message passing process to be done in library, but not by the agent’s programmers. The
programmers can enjoy the optimization of message passing without any effort.

5.1.2 Agent execution model

An important issue that we need to cope with to integrate cooperation and communication
into agent oriented programming is the description of two kinds of reasoning process in
an agent: pro-active and reactive reasoning. Pro-active reasoning refers to the long-term
reasoning process of agent. It is the process in which an agent actively determines its goal
by itself and takes actions to achieve the goal. On the other hand, reactive reasoning is
the process in which an agent reacts to some events or messages from the environment or
from other agents. In our execution model, we separate pro-active reasoning and reactive
reasoning by using a scheduler which interrupts the pro-active reasoning cycle if needed
(i.e., when some messages come or some events occur). The execution model of our system
is shown in Figure 5.2.

Fig. 5.2. Agent execution model (execution of agent’s reasoning layer)

As shown in Section 4.2.1, when an agent wants to participate into a communicator, it
invokes a static method called “GetCommunicator” and provides the message processing
plan (a callback procedure) as a parameter. Once this statement is executed, the runtime
system will create a new thread (which is different from the thread that executes the pro-
active reasoning cycle) to listen to messages from the communicator and store incoming
messages into a messages queue. In software agent, information about the outside world
is often sent as message to agents so an agent “senses” the outside world by listening for
messages. The message listener (message processing plan defined by the programmers)
can be viewed as a sensor of the agent to sense the outside world. In Figure 5.2, the

5.2 The Yaccai programming language 25

message dispatcher (which runs in the same thread with the pro-active reasoning code)
fetches messages from the messages queue and delivers to appropriate agent’s plan (the
message processing plan). The message processing plan may update the belief-base and
after the plan is finished, the command scheduler of our runtime system will return control
to the pro-active reasoning code (the main reasoning plan for the agent).

This execution model has many advantages. Firstly, it separates the message processing
plans from the main plan (pro-active reasoning code). The separation brings an image
that main plan and message processing plans are executed in different threads of con-
trol and message passing can be seen as asynchronous (in fact, messages are stored in
messages queue and message processing plans are given control by our scheduler when
the scheduler interrupts the main plan). Secondly, since the execution of the two types
of plan (main plan and message processing plan) is actually done by one thread (the
main thread of the agent which normally executes the pro-active reasoning code), many
intricacies of concurrent programming such as race condition can be avoided. The un-
derlying system automatically maintains consistency of data and synchronizes threads if
needed. Finally and most importantly, this execution model is very suitable for modeling
autonomous pro-active agent. The message processing plan is responsible for reactive
reasoning while pro-active reasoning code could be described in main plan. By this way,
programmers can easily model autonomous agent with pro-active reasoning and reactive
reasoning capabilities.

5.2 The Yaccai programming language
We have designed and implemented a new agent oriented programming language called
Yaccai (Yet Another Concurrent Cooperating Agent Infrastructure) to support the exe-
cution of the proposed cooperation primitives.

5.2.1 Overview of Yaccai

Yaccai is an agent oriented programming language which supports not only the au-
tonomous computational model of agent but also the cooperation process in multiagent
systems. The language provides constructs for defining classes and agent classes like in
normal object oriented programming languages. Agent class is a special type of class
that is representing an agent. An agent class contains definitions of methods and plans
(plan is similar to a procedure to achieve a goal). Yaccai uses the concept of “commu-
nicator” in MPI to model agent groups and provides collective operations as methods of
a communicator object. Yaccai wraps each agent (an instance of an agent class) into a
separated process which can be executed on a remote host. An agent can uses the create
operator to create a new agent, the newly created agent may run in a different machine
from the machine that invoked the create operator. Moreover, Yaccai provides an in-
tegrated belief-base for each agent. An agent can use this belief-base to store its beliefs
(knowledge about the world, the goal it is pursuing, etc.). An advanced belief-base query
language with similar syntax to the syntax of LINQ [39] is also integrated in Yaccai. The
mental state of an agent is therefore easily described and the reasoning cycle (cycle of
sense-reasoning-act) is automatically realized when the programmers specified a special
plan with name “act”.

Figure 5.3 shows the brief grammar of Yaccai. The syntax of plan declaration con-
tains “precond” and “maintains” clauses which represent the pre-condition and maintain-
condition (condition that must be maintained during the execution of the plan) respec-
tively. The create operator allows an agent to fork a new agent (a new instance of an

26 Chapter 5 Communication and execution model

〈translation unit〉 === 〈include stmt〉 *
(

〈class decl〉
∣

∣

∣
〈agent class decl〉

)

*

〈include stmt〉 === include 〈string literal〉 ;

〈access type〉 === public

∣

∣

∣
protected

∣

∣

∣
private

〈class decl〉 === 〈access type〉 class 〈identifier〉
[

extends { 〈identifier list〉 }
]

{
(

〈method decl〉
∣

∣

∣
〈member var decl〉

)

*

}

〈agent class decl〉 === 〈access type〉 agentclass 〈identifier〉
[

extends { 〈identifier list〉 }
]

{
(

〈method decl〉
∣

∣

∣
〈member var decl〉

∣

∣

∣
〈plan decl〉

)

*

}

〈member var decl〉 === 〈access type〉
[

static
]

〈identifier〉
[

= 〈expression〉
]

(

, 〈identifier〉
[

= 〈expression〉
])

* ;

〈stmt block〉 === {
〈statement〉 *

}

〈method decl〉 === 〈access type〉
[

static
]

function 〈identifier〉 (〈identifier list〉)

〈stmt block〉
〈plan decl〉 === 〈access type〉 plan 〈identifier〉 (〈identifier list〉)

[

precond (〈expression〉)
]

[

maintains (〈expression〉)
]

〈stmt block〉
// forks an agent at a host specified in 〈expression〉
// 〈identifier〉 must be an agentclass name

〈agent allocation expr〉 === create 〈identifier〉 (〈expression list〉)
[

@ 〈expression〉
]

// returns a string literal represents the 〈expression〉
〈stop eval expr〉 === @ { 〈expression〉 }

Fig. 5.3. Excerpt of Yaccai grammar

agentclass) as well as specify the destination host at which the newly created agent is
executed. The “stop evaluation operator” (@{expression}) returns a literal string which
represents the expression inside the operator (the expression inside the operator is not
evaluated, but is recognized as merely a string; this operator is somewhat similar to the
quote operator in Lisp). This operator is used for two purposes, the first one is creating a
string representation of an expression to send to other agents via the network for remote
evaluation, the other one is returning a variable name for binding result of the match
statement which matches a string with a specified pattern. The full grammar of Yaccai
can be found at Appendix B.

5.2 The Yaccai programming language 27

5.2.2 Modeling reasoning cycle and belief-base

Yaccai provides a built-in belief-base which agent programs may use to store agent’s
beliefs. It also provides language constructs for querying and managing the belief-base
based on ideas borrowed from LINQ (language integrated query)[39]. The execution of
agent can be briefly described in a loop: sense the environment, update its belief-base,
determine action to perform and take action, action may change the environment and the
agent needs to sense the environment again.

5.2.2.1 Belief-base:
In Yaccai, each agent has its own independent belief-base. There is no common belief-base
for the entire multiagent system. This ensures the independence of each agent because
the agent does not implicitly share belief-base with other agents in the system. It is
important for agent to share knowledge with others, but unlike joint-intentions model
where agents automatically (implicitly) have common knowledge, in our model, an agent
needs to explicitly query for other agents’ knowledge if it wants to know information
about those agents. The information that agent received from querying other agents may
be stored into its own belief-base for later query or update. Belief-base operations are
briefly described in table 5.2. Object can be stored into belief-base by using “belief fact”

Table. 5.2. Belief-base operations

Operation Example
add fact belief fact new {x = 1, y = 2};
query belief query {x, y};
projection belief query {x, y} as p{x};
conditional query belief query {x, y} as p where p.x == 1;
remove belief remove {x, y};
conditional remove belief remove {x, y} as p where p.x == 1;
join (belief query {x, y} as p) join

(belief query {y, z} as q) on p.y == q.y;

expression. Object may be referred to by a pointer or directly created with operator
new. We also support anonymous object (instance of implicitly declared class). The first
example in Table 5.2 will add an object with 2 member variables {x, y} into the belief-
base (an anonymous object with two members x = 1, y = 2 is created). The class name
or list of member variable names (in case of anonymous class) may be used to identify
the class. We call the identifier for a class as “class signature”. In the above example,
class signature is “{x, y}”. The expression “belief query class signature” will query the
belief-base for all objects that are instance of class described by class signature (as seen in
the second example in Table 5.2). The result set of belief-base operations is represented
by a collection in our language.
Condition expression (expression after keyword “where”) may be used in the belief query
and belief remove operation to filter objects affected by the operation as described in the
forth example in Table 5.2. Moreover, join and projection operations can be applied on
the result set of belief query operation. The third example in Table 5.2 will projects the
object with two member variables {x, y} onto an object with only one member {x}.
The syntax of belief-base operations is not new because it is introduced in LINQ[39].
But it is the first time these operations are applied to manage the belief-base of agent in
an agent oriented language where database query operations are frequently used by the

28 Chapter 5 Communication and execution model

program.

5.2.2.2 Reasoning cycle
Reasoning cycle of agent is automatically realized when agent program defines a special
plan with name “act”. A plan is similar to a method in object oriented language, but it
is defined inside agent class and has different semantics. In AOP, a plan is considered as
a recipe to achieve a goal. Plan usually consists of pre-condition, maintain-condition and
plan’s body where statements are declared. Pre-condition is condition that needs to be
true when the plan is invoked. During the execution of plan, maintain-condition has to be
true. When maintain-condition becomes false, the execution of plan is canceled and plan
becomes false (i.e, the goal that the plan is trying to achieve could not be accomplished).

agentclass HelloAgent {1

public m comm;2

public function HelloAgent() {3

m comm = Environment.GetCommunicator(4

“World”, MsgListener);5

}6

public plan MsgListener(msg) {7

id = -1;8

match msg.Value with {9

“Hello from”, @{id}, “at”, @{addr} → {10

belief fact new {rank=id, host=addr};11

}12

}13

}14

public plan act() {15

myRank = Environment.GetRank();16

m comm.Bcast(“Hello from ” + myRank +17

“ at ” + Environment.Hostname());18

}19

}20

21

class SimpleMAS {22

public static function Main() {23

a1 = create HelloAgent() @ “localhost”;24

a2 = create HelloAgent() @ “somehost.com”;25

}26

}27

Fig. 5.4. A simple multiagent system definition

Fig. 5.4 shows an example of a multiagent system definition in Yaccai. Once the agent
is created, the constructor will be called and then the plan “act” will automatically be
executed. Each agent is mapped to a process (including process in remote host). Each
agent in the example simply broadcasts a “Hello” message and its identifier (rank) to
others. When an agent received “Hello” message, it stores the host address of the sender
into belief-base.

29

Chapter 6

Evaluation

In this chapter, we evaluate the proposed approach from two aspects: expressiveness of
collective operations in the description of agent cooperation protocols and performance of
cooperation protocols that are implemented using collective operations. For expressiveness
of collective operations, we investigated the simplicity and clarity of cooperation protocols
implemented with these cooperation primitives, as well as the powerfulness of the primitive
set. For performance of cooperation, we carried out experiments with the Vacuum Cleaner
simulation problem and evaluated the performance of Vacuum Cleaner agent team with
different computational resources and different problem settings.

6.1 Expressiveness of collective operations as agent cooperation

primitives
In this section, we evaluate our model in the aspect of expressiveness, that is, how agent
cooperation protocols can be easily and intuitively described with collective operations.
First, for simplicity and clarity, we implemented the Contract Net Interaction Protocol
(CNET) in Yaccai and compared with the implementation in JADE (Java Agent DEvel-
opment Framework). Then, for powerfulness of the proposed collective operations set, we
pseudo-implemented all of the 11 protocols in the FIPA Interaction Protocols set using
collective operations.

6.1.1 Simplicity and clarity

As we have mentioned in Section 4.1, collective operations make the code that implements
agent cooperation protocols more readable and well-structured. To make this claim con-
vincing and clear, we give here the comparison between the implementation of the Contract
Net Protocol in the proposed programming language, Yaccai, and in JADE [40], a famous
agent development framework based on Java *1.

As described in Section 4.4.2, in Contract Net Protocol, the Initiator wishes to have
some task performed by the Participants and further wishes to optimize some criteria (in
this case, maximizing a proposal value). The excerpt of code for implementing CNET in
Yaccai and in JADE is shown in Figure 6.1 and Figure 6.2, respectively.

In Yaccai, the Initiator code can be read as “broadcast the CFP (call for proposal)
to all agents in the communicator “comm” (line 3 in Figure 6.1), and then use Reduce
operation with “MAX ID” operator to find the proposal with maximum value (line 5)”

*1 The executable code of the implementation in Yaccai can be found at Yaccai’s homepage:
http://www.nue.ci.i.u-tokyo.ac.jp/%7Educ/yaccai , the code in JADE is available in the JADE
example code at http://jade.tilab.com/download.php

30 Chapter 6 Evaluation

// Initiator1

// my rank represents the identifier of the agent2

comm.Bcast(“FIPA CONTRACT NET Initiator ” + my rank + “ ” + task);3

Environment.Sleep(5000);4

result = comm.Reduce(@{new YValIdPair(proposal, my rank)}, @{ColOps.MAX ID});5

// accept only the best proposal (the agent whose rank is result.Id)6

comm.Send(result.Id, “PROPOSAL ACCEPT Initiator ” + my rank + “ ” + task);7

for(i = 1; i <= nResponders; i += 1)8

if(responder ids[i] != result.Id)9

m comm.Send(responder ids[i], “PROPOSAL REJECT Initiator ” + my rank + “ ” + task);10

11

12

// Responders’ message listening plan for “comm”13

// proposal, my rank are instance variables14

match msg.Value with15

“FIPA CONTRACT NET”, “Initiator”, @{id}, @{task} → {16

proposal = evaluateAction(id, task);17

}18

19

Fig. 6.1. Implementation of Contract Net Interaction Protocol (CNET) in Yaccai

(the Responders simply set their own proposal value in an instance variable (for remote
query from the Reduce operation) when they received the CFP as shown in line 17). The
“MAX ID” operator takes two operands which are 2 pairs of integers. “MAX ID” returns
the pair whose value of the first element is bigger than the one in the other pair (in the
example, the operator returns a pair of (proposal, my rank) which has the bigger proposal
value).

The Initiator code in JADE needs to create an ACL message whose protocol is set to
“FIPA CONTRACT NET”, loop through the receivers and add them to the target of
the message (these operations are equivalent to broadcasting CFP to all agents) (lines
1–6 in Figure 6.2). Next, the Initiator manually gathers all proposals and implements the
algorithm to find maximum proposal (“bestProposal”) (lines 15–26), this part is equivalent
to reducing all proposed values to find the best one. Since JADE does not provide remote
evaluation ability, the Responders have to manually set the proposal value (line 41) and
create the reply message (lines 42-44).

The code in Yaccai is more readable than in JADE because it reflects exactly what the
programmers want to do while the code in JADE can not be recognized without thinking.
More importantly, the implementation with Yaccai is well-structured because it wraps all
destinations into a communicator and wraps the process for gathering all proposals and
the algorithm for finding best proposal in an operator. The frequently used operators
(such as MAX, MIN, SUM, . . .) can be implemented in library and the programmers do
not need to re-implement them. The implementation in Yaccai takes 120 lines of code
(from scratch) while the implementation in JADE takes 140 lines even it is using the
specific library implementing FIPA CNET (therefore, the total code in JADE is many
times bigger than the code in Yaccai).

6.1.2 Powerfulness of the proposed cooperation primitive set

With the proposed cooperation primitive set (Barrier, Bcast, Reduce, Gather, Scatter),
we were able to implement all protocols in the FIPA Interaction Protocol set [35]. Many
protocols in this set can be directly mapped to some collective operations, as shown in

6.1 Expressiveness of collective operations as agent cooperation primitives 31

// Initiator1

ACLMessage msg = new ACLMessage(ACLMessage.CFP);2

for (int i = 0; i < args.length; ++i) {3

msg.addReceiver(new AID((String) args[i], AID.ISLOCALNAME));4

}5

msg.setProtocol(FIPANames.InteractionProtocol.FIPA_CONTRACT_NET);6

msg.setReplyByDate(new Date(System.currentTimeMillis() + 10000));7

msg.setContent("dummy-action");8

9

addBehaviour(new ContractNetInitiator(this, msg) {10

protected void handleAllResponses(Vector responses, Vector acceptances) {11

int bestProposal = -1;12

AID bestProposer = null;13

ACLMessage accept = null;14

Enumeration e = responses.elements();15

while (e.hasMoreElements()) {16

ACLMessage msg = (ACLMessage) e.nextElement();17

if (msg.getPerformative() == ACLMessage.PROPOSE) {18

ACLMessage reply = msg.createReply();19

reply.setPerformative(ACLMessage.REJECT_PROPOSAL);20

acceptances.addElement(reply);21

int proposal = Integer.parseInt(msg.getContent());22

if (proposal > bestProposal) {23

bestProposal = proposal;24

bestProposer = msg.getSender();25

accept = reply;26

}27

}28

}29

}30

}31

32

// Responder33

MessageTemplate template = MessageTemplate.and(34

MessageTemplate.MatchProtocol(FIPANames.InteractionProtocol.FIPA_CONTRACT_NET),35

MessageTemplate.MatchPerformative(ACLMessage.CFP));36

37

addBehaviour(new ContractNetResponder(this, template) {38

protected ACLMessage prepareResponse(ACLMessage cfp) throws39

NotUnderstoodException, RefuseException {40

int proposal = evaluateAction();41

ACLMessage propose = cfp.createReply();42

propose.setPerformative(ACLMessage.PROPOSE);43

propose.setContent(String.valueOf(proposal));44

}45

Fig. 6.2. Implementation of Contract Net Interaction Protocol (CNET) in JADE.
(source: The JADE framework http://jade.tilab.com/)

32 Chapter 6 Evaluation

Section 4.4 and in Appendix A. This confirms the powerfulness of the collective operation
set. In fact, this set of collective operations is Turing-complete, as proved by Gorlatch et
al. in [41], but the proof is beyond the scope of this thesis.

6.2 Performance of cooperation protocols implemented with

collective operations
In this section, we evaluate the performance of cooperation protocols implemented with
collective operations. We have implemented the Vacuum Cleaner simulation problem in
Yaccai: each Vacuum Cleaner team has many agents (each agent is a Vacuum Cleaner)
that cooperate with each other using many different protocols. The performance of each
cooperation protocol is evaluated based on the amount of garbage that the team collected
or the time needed to clean all garbage.

6.2.1 Homogeneous agents

6.2.1.1 Problem settings
Vacuum Cleaner problem is a famous problem in AI in which each vacuum cleaner is an
autonomous entity (human being, robot, . . .) that patrols around a space to search and
clean dirt (or to collect garbage). Each entity may work independently or cooperate with
others. The problem is that what actions each entity should take to totally clean the space
as soon as possible and maintain the space in the cleaned status (i.e., when a new dirt
appeared, how to discover the position and clean the dirt as quick as possible). In this
experiment set, we simulate the Vacuum Cleaner problem using software multiagent teams
with homogeneous agents created with Yaccai. Each Vacuum Cleaner is represented as a
software agent whose capabilities are move and clean. All agents have the same capabilities
so the problem is called “homogeneous Vacuum Cleaner problem”. The simulation server
constructs a virtual space which is a grid of m × n cells and contains many cells that
have dirt as shown in Figure 6.3. Agent can only move up, down, left or right (one step
for each cycle) in the virtual space and it receives information about the current position
(e.g., contains dirt or not) from the server. The agent can only clean a unit of dirt in each
cycle by sending a “clean” command; a cell may contain many units of dirt.

Fig. 6.3. Homogeneous Vacuum Cleaner problem

The server is written in C# while the agent is written in our language (complete source

6.2 Performance of cooperation protocols implemented with collective operations 33

code for the agent can be viewed at the Yaccai’s homepage*2). The agents communicate
with the server using TCP sockets. At each cycle, the server waits until all agents have
issued a command, then it advances the simulation one step (an agent can only issue
one command for each cycle). Communication between agents is done by using collective
operations. A game lasts for 1000 cycles; at each cycle, the server reports the score of the
game by the following formula:

Score =
Total units of dirt cleaned

Total units of dirt
× 100 (6.1)

In the first experiment, we created a multiagent system which contains many simple
agents: the agents do not cooperate with each other, they only send/receive commands
and information from the simulation server. The agents simply scan the virtual space
by moving horizontally first then go up/down one row when they could not move in
horizontal direction and change the horizontal direction from left-to-right to right-to-left
and vice versa. When an agent discovered a cell that has dirt, it immediately sends “clean”
commands until the cell is cleaned.

In the second experiment, we created a multiagent system which contains agents that
cooperate using Bcast operation. The agents use the same strategy in the first experiment
to move around the virtual space. When an agent found a cell has dirt, it will broadcast
the position of the cell and the units of dirt contained there to all other agents. When
received message from other agents, an agent will store the information into its belief-base
and determine if it should go to the cell to clean or not. The heuristic to determine to go
or not is simple: if the agent is in idle state and the number of units of dirt is bigger than
4 times of the distance between current position to dirt’s position, the agent will go to
dirt’s position. On the way to the dirt, if the agent found another place contains dirt, it
will clean the place immediately (and broadcast the position to other agents). When an
agent successfully cleaned a position, it also broadcasts the information to other agents.
If the agent is not in idle state, it simply stores the cell in its belief-base and when it
becomes idle, it will query the belief-base for dirty cells and go to clean. An agent will
remove the dirt’s position from its belief-base when it received the clean message from
other agents.

In the third experiment, we created a multiagent system which contains agents that use
similar cooperation scheme to the agent in the second experiment except that when an
agent found dirt, it uses Reduce operation to know the idle agent nearest to it. Then it
sends the information about the cell to that agent only (not broadcast to all agents).

We executed the simulation with 2 scenarios (maps): map dense contains large amount
of dirt that broadly distributed across many cells in the virtual space (the map has many
cells that contains dirt, so it is dense of dirt), map sparse contains large amount of dirt
that comparatively concentrated on a region in the virtual space; each map is a grid with
fixed size 20 × 30 cells. The experiment is carried out on a cluster of 20 machines (Intel
Pentium 4, 2.8GHz, 2GB RAM, Linux 2.6.18) connected by Gigabit ethernet to guarantee
that each agent is executed on a different host. The score is the average score of 5 times
of simulation reported at the end of each simulation (i.e., at the cycle 1000).

6.2.1.2 Result for homogeneous agent teams
Figure 6.4 and Figure 6.5 show the score for the non-communication agents, broadcast
agents and reduce agents with 2 maps: map dense and map sparse respectively. When
the number of agents increased, the score also increased (the simulations on map sparse

*2 http://www.nue.ci.i.u-tokyo.ac.jp/%7Educ/yaccai

34 Chapter 6 Evaluation

with 16 broadcast and reduce agents reached the highest possible score (100) after about
900 cycles, i.e., agents do nothing in about 100 cycles left). Standard deviation is very
small (as shown in the figures) because we do not use any random parameter. We also
performed the simulation with 32 agents run on 16 hosts (each host has 2 agents), but
we do not show the teams’ score in the graphs because for map sparse they reached the
highest score too early before the last cycle.

0

10

20

30

40

50

60

70

80

3 4 5 8 16

Number of agents

S
c
o
r
e

nocomm reduce bcast

Fig. 6.4. Average score of 5 times of sim-
ulation on map dense

0

20

40

60

80

100

120

3 4 5 8 16

Number of agents

S
c
o
r
e

nocomm reduce bcast

Fig. 6.5. Average score of 5 times of sim-
ulation on map sparse

In map dense, the broadcast agents do not perform very well because they can not scan
entire the space to find dirt and do too many useless moves. The broadcast agents seem to
concentrate on a place at each time (because when received broadcast message they often
go to the dirt place if they are in idle state or when they become idle, they will query the
belief-base for the cell and go to clean). The reduce agents have the same performance
with non-communication agents because when discovered a position has dirt, an agent
does not broadcast message to all agents, only one agent is affected by the message.
When there are many places with dirt, the agents are busy (not in idle state) and they
will not react to messages from other agents immediately so the behavior of the team is
similar to non-communication team. In the map sparse map, the situation is different.
The broadcast team has the best performance because they do not spend a lot of time in
idle moves. They can concentrate on a dirt place immediately when an agent found the
dirt place. The reduce team also has relatively good performance because when agents are
in idle state, they will react to messages from other agents immediately so the behavior
is similar to broadcast team. Agents team without cooperation has poor performance in
this situation because agents have to find dirt independently and do many useless moves
to scan the virtual space.

The result confirms that collective operations are good for cooperating agents: the
agents that use collective operations to cooperate obtained high score when cooperation
is important to the problem. In situations where cooperation becomes very important
(e.g., in the map sparse), collective operation is very effective because it simplifies the
description of cooperation of agents. Even in situations where cooperation is not impor-
tant (e.g., in the map dense), the agent team uses collective operation may also achieve
good performance if it uses appropriate cooperation scheme to reduce the risk of “over-
cooperating” (i.e., too concentrated on a region).

6.2 Performance of cooperation protocols implemented with collective operations 35

6.2.1.3 More about performance of cooperation protocol for homogeneous agents
In the experiments described above, we can see the impact of cooperation by comparing
the score that each team obtained, especially in map sparse. In order to make this impact
more clearly, we slightly modified the problem settings and investigated the performance
of agent teams with map sparse. In these experiments, we modified the server so that it
does not automatically send the information about dirt contained in the current cell to the
agents. If an agent wants to know the information about the dirt contained in the current
cell, it needs to consecutively send 5 “explore” commands to the server. When received
“explore” commands in 5 consecutive cycles from an agent, the server will send back to
the agent information about current position of the agent: does the cell contain dirt or
not, and the unit of dirt (if the cell has). The 3 teams, no communication team, broadcast
team and reduce team, are exactly the same as in the above experiments except that when
in idle state (i.e., not cleaning or moving to a position where the agent believes that the
position has dirt), an agent always explores the current cell after a move. This effectively
causes the cost of finding dirt expensive and in turn it makes the value of cooperation
more precious.

0

10

20

30

40

50

60

70

80

90

3 4 5 8 16

Number of agents

S
c
o
r
e

nocomm bcast reduce

Fig. 6.6. Average score of 5 times of simulation on map sparse with “explore” command.

We carried out these experiments with the modified Vacuum Cleaner server and modi-
fied Vacuum Cleaner agent teams on the PC cluster as described in Section 6.2.1.1. The
results of these experiments are shown in Figure 6.6. The teams that use Bcast and
Reduce operations obtained very good score compared to the team without cooperation.

6.2.2 Heterogeneous agents

6.2.2.1 Problem settings
In this experiment set, we simulate the Vacuum Cleaner problem with heterogeneous
agents. The virtual space is the same as in Section 6.2.1.1, except that the size of the grid is
different for each experiment and there are many types of dirt in the space. Each agent can
only move up, down, left, right as described in the first experiment set (without “explore”
command) in Section 6.2.1.1. However, the capability of cleaning dirt is different: each

36 Chapter 6 Evaluation

agent can only clean a type of dirt as shown in Figure 6.7. The evaluation criteria in these

Fig. 6.7. Heterogeneous Vacuum Cleaner problem

experiments are different to the criteria in the first set of experiments. We do not restrict
the time of simulation like in the first experiment set, but allow the agents to move and
clean until the virtual space is cleaned. This allows us to investigate the “convergent point”
in the behavior of each team because the removal of the time restriction is equivalent to
simulation with infinite time (under the condition that new dirt does not appear after
the virtual space reaching the clean state). The main criterion for evaluation of the
performance is the average number of move commands that each agent issued during the
game as shown in the following formula (note that each cycle an agent can only clean a
unit of dirt, so the total number of move commands can be calculated from the cycles for
reaching the clean state):

nMoves =
(nCycles× nAgents− nTotalDirt)

nAgents
(6.2)

nMoves: average number of move commands
nCycles: number of cycles to reach the clean state

nAgents: number of agents in the team
nTotalDirt: total unit of dirt in the map

It can be easily recognized that the smaller the number of move commands, the better
the team performance because with fixed amount of dirt, the team with smaller number
of move commands will reach the clean state faster than the team with bigger number of
move commands.

In addition to the main criterion, we also investigated the communication cost between
agents by measuring the average times each agent sends messages to other agents. For
a Bcast operation, we assume that the communication cost is aggregated to the invoker,
and the number of times sending message is multiplied by the number of agents in the
team.

There are 5 different agent teams in this set of experiments: in addition to the team
without communication, with broadcast strategy and reduce strategy as described in the
first experiment set, we added 2 teams with broadcast and reduce strategy but the agents
also broadcast the information about cleaned lines (i.e., after scanning a line and known
that the line is cleaned, an agent will broadcast this information to all other agents in the
team).

6.2 Performance of cooperation protocols implemented with collective operations 37

Each map in this experiment set contains 2 types of dirt called type A and type B,
respectively. There are 3 agents that can clean type A and 3 agents of type B in each
team (unlike the first experiment set, in these experiments we fixed the number of agents).
The experiments are carried out with 3 maps: sparse 20, sparse 40 and random 20. The
map sparse 20 is a grid of 20×20 cells with sparse dirt distribution while sparse 40 is a
grid of 40×40 cells with the same density of dirt. The map random 20 is a grid of 20×20
cells with relatively dense dirt distribution. While in the first experiment set, agents are
executed on Linux PC cluster, this set of experiments restricts the computation resources:
all agents are executed on just one machine (Intel Pentium M, 1.7GHz, 1.0GB of RAM,
Windows XP2 Professional).

6.2.2.2 Result for heterogeneous agent teams
Figure 6.8 shows the average number of move commands that an agent issued from the
beginning of the simulation until reaching the clean state.

0

200

400

600

800

1000

1200

1400

1600

1800

sparse_20 sparse_40 random_20

Map

N
u
m

b
e
r

o
f

m

o
v
e

c
o
m

m
a
n
d
s

nocomm bcast reduce bcastr reducer

Fig. 6.8. Average number of move commands of heterogeneous agent teams

In sparse maps (sparse 20 and sparse 40), the team without cooperation between
agents takes about 1.5 times bigger number of move commands than the team with Bcast
or Reduce operations (without broadcasting scanned lines). Furthermore, when compared
to the team with Bcast or Reduce operations plus broadcasting scanned empty lines, the
team without communication takes about 2 times larger number of moves. This confirms
that collective operations are very effective for agent cooperation problems. Moreover, by
broadcasting scanned empty lines (using Bcast, one of the collective operations), agent
teams got better performance.

In dense map (dense 20), the ratio between number of moves of the team without com-
munication and of the team with cooperation is about 1.7 and the team that broadcasts
empty lines information does not perform better than the team without doing this oper-
ation. It is because in dense maps, the probability that an agent discovered dirt by itself
(i.e., did not rely on information received from others) is higher. Therefore, agents are
often busy to clean dirt rather than moving around the virtual space and send information
to other agents. That is the reason why the broadcasting scanned line strategy does not
work and the ratio between non-communication team with these teams becomes smaller.

Figure 6.9 shows the communication cost of agent teams. The team without cooper-

38 Chapter 6 Evaluation

0

100

200

300

400

500

600

sparse_20 sparse_40 random_20

Map

n
S
e
n
d

nocomm bcast reduce

Fig. 6.9. Communication cost that cooperation takes (average number of messages an
agent sent for cooperation)

ation does not take any communication cost (the cost is 0 for all maps). With sparse
maps, the teams with cooperation do not communicate too much because the proba-
bility of discovering dirt position of an agent is low and therefore the probability for
sending/broadcasting messages is also small. But note that, with this small amount of
communication, the teams’ performance improved drastically and therefore the coopera-
tion is very effective. On the other hand, in the dense map, the teams with cooperation
protocols send/broadcast a lot of messages because the agents frequently discover dirt
positions. However, since other agents are often busy cleaning at other dirt positions, the
messages that are communicated often become useless in dense maps.

The experiment results once again illustrate that when cooperation becomes very im-
portant (e.g., in sparse maps), collective operations help the agents cooperate with each
other very well. Therefore, the proposed model is appropriate for description of coopera-
tive multiagent systems.

39

Chapter 7

Conclusion and future work

7.1 Conclusion
This thesis proposed an approach for constructing cooperation protocols of multiagent
systems from simple cooperation primitives called collective operations, a concept found in
MPI [33]. Agent cooperation protocols implemented with these cooperation primitives are
intuitive, well-structured and therefore easier to understand and simpler for verification.
In particular, we have shown that, many sophisticated cooperation protocols in the FIPA
Interaction Protocol set can be directly mapped to several collective operations. This
means these protocols can be easily implemented with only few of proposed cooperation
primitives and the implementation based on these primitives leads to a more readable
code. Collective operation primitives also reduce the effort that the programmers have to
make to implement these sophisticated cooperation protocols. Furthermore, constructing
agent cooperation protocols from these primitives may yield well-optimized code because
optimizations of communication can be done in the implementation of the primitives by
the runtime system.

We have also presented a new agent execution and communication model that supports
the integration of cooperation into agent oriented programming. Our model not only pro-
vides supports for the description of mental state of agents (belief, desire, intention), but
it also abstracts the cooperation process that occurs in the entire multiagent system using
the proposed cooperation primitives. To prove that the proposed cooperation primitives
can be smoothly integrated in agent oriented programming, we designed and implemented
a new agent oriented programming language called Yaccai, which supports the execution
of collective operations while maintaining the autonomous computational model of agent.
Our system is therefore effective for developing individual agent as well as multiagent sys-
tems. We carried out many experiments on the Vacuum Cleaner problem with different
problem settings and computation resources. The results of these experiments confirm
that collective operations help agents to effectively cooperate to reach the goals of the
multiagent systems.

7.2 Future work

7.2.1 Revealing more power of collective operations

So far in this thesis, we have discussed many applications of collective operations in the
description of agent cooperation protocols. However, we believe that the power of col-
lective operations as agent cooperation primitives is not exhaustively investigated in this
thesis. Therefore, in the future, we plan to reveal more applications of these cooperation
primitives in order to make the proposed primitives to be standard building blocks for

40 Chapter 7 Conclusion and future work

implementing cooperation protocols. For example, as we have stated in Section 4.1, the
many-to-many negotiation in multiagent systems can be modeled using other collective
operations such as AllReduce or AllGather operations. It is important to investigate
these abilities of collective operations in the future.

7.2.2 Optimization of communication cost

Our system currently broadcasts messages to all agents at the message passing layers
(when Bcast operation is invoked) and ignores the messages if the agent is not in the
corresponding communicator. In the future, it should be better if we manage the commu-
nicator information and only broadcast messages to agents that are in the communicator.
To achieve this, we need to use a centralized agent to manage communicator’s data or
replicate the data at each agent. The preferable method is replication of data, but it may
lead to the data consistency problem so the consistency model must be investigated.

7.2.3 Supporting wide-area computing environment

The current implementation of Yaccai with collective operations can work well with PC
clusters, but it does not work for wide-area grid computing environments where compu-
tational resources are unreliable and network connections between hosts are not always
available (e.g., some clusters may be behind firewall or NAT). Still, the model proposed in
this thesis is not restricted for only a single machine or PC clusters, it can be used for an
arbitrary environment provided that the underlying message passing system supports the
communication between agents. Therefore, adapting message passing system of Yaccai
for these environments will surely make the proposed model more useful.

7.2.4 Building real-world multiagent applications

In this thesis, we have built a small multiagent application, that is, the Vacuum Cleaner
simulation problem. The power of the model can not be convincingly proved without
implementing other real-world multiagent systems with complex cooperation protocols.
For example, creating a Robocup Soccer [42] or Robocup Rescue [43] team can be an
interesting testbed for the evaluation of our system.

41

Publications

(1) Nguyen Tuan Duc, Ikuo Takeuchi. Collective operations as building blocks for
agent cooperation. International Conference on Intelligent Agents, Web Technolo-
gies and Internet Commerce (IAWTIC08), Dec. 10–12, 2008.

(2) Nguyen Tuan Duc, Ikuo Takeuchi. Abstraction of agent cooperation in agent ori-
ented programming language. 11th Pacific Rim International Conference on Multi-
agents (PRIMA 2008), Dec. 15–16, 2008. (short paper)

(3) グェン トアン ドゥク, 竹内郁雄. 「エージェント指向プログラミングにおける集団
操作の応用」(Application of collective operations in agent oriented programming
language). 合同エージェントワークショップ＆シンポジウム２００８（JAWS-2008）,
Oct. 29–31, 2008.

(4) Nguyen Tuan Duc, Ikuo Takeuchi. 「Yaccai: A multiagent system development
framework」. IPSJ/SIGSE ソフトウェアエンジニアリングシンポジウム 2008
(SES2008) ,Sep. 1–3, 2008. (ポスター発表 - poster).

42

References

[1] Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92,
1993.

[2] N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence, 75(2):195–240, 1995.

[3] David V. Pynadath, Milind Tambe, Nicolas Chauvat, and Lawrence Cavedon. Toward
Team-Oriented Programming. In Proceedings of the 6th International Workshop on
Agent Theories, Architectures, and Languages (ATAL ’99), pages 233–247, 1999.

[4] Michael Schumacher. Objective Coordination in Multi-Agent System Engineering.
Design and Implementation. Springer Berlin / Heidelberg, 2001.

[5] Minsoo Kim, Minkoo Kim, and Jungtae Lee. Group Situation based Cooperation
Model. In Proceedings of the 2007 International Conference on Convergence Infor-
mation Technology (ICCIT ’07), pages 1372 – 1377, 2007.

[6] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence (IJCAI 1973), pages 235–245, 1973.

[7] Anand S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language. In Proceedings of The 7th European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, (MAAMW 1996), pages 42–55, 1996.

[8] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog, a con-
current programming language based on the situation calculus. Artificial Intelligence,
121(1-2):109–169, 2000.

[9] Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch. Meyer.
Formal Semantics for an Abstract Agent Programming Language. In Proceedings of
The 4th International Workshop on Agent Theories, Architectures, and Languages
(ATAL ’97), pages 215–229, 1997.

[10] Mehdi Dastani, Frank S. de Boer, Frank Dignum, and John-Jules Ch. Meyer. Pro-
gramming agent deliberation: an approach illustrated using the 3APL language. In
Proceedings of The Second International Joint Conference on Autonomous Agents &
Multiagent Systems (AAMAS 2003), pages 97–104, 2003.

[11] Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch.
Meyer. Agent Programming in 3APL. Autonomous Agents and Multi-Agent Sys-
tems, 2(4):357–401, 1999.

[12] Mehdi Dastani and Leendert W. N. van der Torre. Programming BOID-Plan Agents:
Deliberating about Conflicts among Defeasible Mental Attitudes and Plans. In Pro-
ceedings of The 3rd International Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2004), pages 706–713, 2004.

[13] A. Rao and M. Georgeff. Modeling rational agents within a BDI architecture. In
Proceedings of The 2nd International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR91), pages 473–484, 1991.

[14] François Felix Ingrand, Michael P. Georgeff, and Anand S. Rao. An architecture for
Real-Time Reasoning and System Control. IEEE Expert, 7(6):34–44, 1992.

[15] Marcus J. Huber. JAM: A BDI-Theoretic Mobile Agent Architecture. In Proceedings

43

of the Third Annual Conference on Autonomous Agents (AGENTS’99), pages 236–
243, 1999.

[16] P. Busetta, R. R”onnquist, A. Hodgson, and A. Lucas. JACK - components for
intelligent agents in Java. Technical Report TR-1, Agent Oriented Software Pty.
Ltd., 1999.

[17] David Morley and Karen L. Myers. The SPARK Agent Framework. In Proceedings
of The 3rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004), pages 714–721, 2004.

[18] Mehdi Dastani. 2APL: a practical agent programming language. Autonomous Agents
and Multi-Agent Systems, 16(3):214–248, 2008.

[19] Mehdi Dastani, Dirk Hobo, and John-Jules Ch. Meyer. Practical extensions in agent
programming languages. In Proceedings of The 6th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2007), page 138, 2007.

[20] Timothy W. Finin, Richard Fritzson, Donald P. McKay, and Robin McEntire. KQML
As An Agent Communication Language. In Proceedings of the Third International
Conference on Information and Knowledge Management (CIKM’94), pages 456–463,
1994.

[21] The Foundation for Intelligent Physical Agents. FIPA Communicative Act Library
Specification, Version J. http://www.fipa.org/specs/fipa00037/.

[22] Thuc Vu et al. MONAD: A Flexible Architecture for Multi-Agent Control. In Pro-
ceedings of The Second International Joint Conference on Autonomous Agents &
Multiagent Systems, (AAMAS 2003), pages 449–456, 2003.

[23] Yisong Liu, Lili Dong, and Yamin Sun. Cooperation Model of Multi-agent System
Based on the Situation Calculus. In Proceedings of the 2006 IEEE/WIC/ACM In-
ternational Conference on Intelligent Agent Technology (IAT 2006), pages 424–427,
2006.

[24] Zhongzhi Shi, He Huang, Jiewen Luo, Fen Lin, and Haijun Zhang. Agent-based
grid computing. Applied Mathematical Modelling, 30(7):629–640, 2006. Parallel and
Vector Processing in Science and Engineering.

[25] Munehiro Fukuda, Yuichiro Tanaka, Naoya Suzuki, Lubomir Bic, and Shin
ya Kobayashi. A Mobile-Agent-Based PC Grid . In Proceedings of The 5th Annual
International Workshop on Active Middleware Services (AMS 2003), pages 142–150,
2003.

[26] Rafael Fernandes Lopes, Francisco José da Silva e Silva, and Bysmarck Barros
de Sousa. MAG: A Mobile Agent Based Computational Grid Platform. In Pro-
ceedings of The 4th International Conference on Grid and Cooperative Computing
(GCC 2005), pages 262–273, 2005.

[27] Rafael Fernandes Lopes and Francisco José da Silva e Silva. Fault Tolerance in a
Mobile Agent Based Computational Grid. In Proceedings of the Sixth IEEE Interna-
tional Symposium on Cluster Computing and the Grid Workshops (CCGRIDW’06),
2006.

[28] Mohammad Tanvir Huda, Heinz W. Schmidt, and Ian D. Peake. An Agent Oriented
Proactive Fault-Tolerant Framework for Grid Computing. In Proceedings of The First
International Conference on e-Science and Grid Technologies (e-Science 2005), pages
304–311, 2005.

[29] Mitsubishi Electric ITA. Concordia: An Infrastructure for Collaborating Mobile
Agents.

[30] Wei Liu, Zong-Tian Liu, and Yun Li. A modeling framework for agent-oriented anal-
ysis and design based on grid architecture. In Proceedings of The Third International
Conference on Machine Learning and Cybernetics (ICMLC 2004), pages 210–215,
2004.

44 References

[31] Grzegorz Frackowiak, Maria Ganzha, Maciej Gawinecki, Marcin Paprzycki, Michal
Szymczak, Myon-Woong Park, and Yo-Sub Han. On Resource Profiling and Matching
in an Agent-Based Virtual Organization. In Proceedings of The 9th International Con-
ference on Artificial Intelligence and Soft Computing (ICAISC 2008), pages 1210–
1221, 2008.

[32] Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons,
2002.

[33] The Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/.
[34] Sergei Gorlatch. Send-receive considered harmful: Myths and realities of message

passing. ACM Transactions on Programming Languages and Systems (TOPLAS),
26(1):47–56, 2004.

[35] Foundation for Intelligent Physical Agents. FIPA Interaction Protocol Specifications.
http://www.fipa.org/repository/ips.php3.

[36] Foundation for Intelligent Physical Agents. FIPA Contract Net Interaction Protocol
Specification, version H. http://www.fipa.org/specs/fipa00029/index.html.

[37] James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing Agent In-
teraction Protocols in UML. In Proceedings of The First International Workshop on
Agent-Oriented Software Engineering (AOSE 2000), pages 121–140, 2000.

[38] Foundation for Intelligent Physical Agents. FIPA Recruiting Interaction Protocol
Specification, version H. http://www.fipa.org/specs/fipa00034/index.html.

[39] The LINQ project. http://msdn.microsoft.com/en-us/netframework/aa904594.
aspx.

[40] Fabio Bellifemine, Giovanni Caire, Agostino Poggi, and Giovanni Rimassa. JADE: A
software framework for developing multi-agent applications. Lessons learned. Infor-
mation & Software Technology, 50(1-2):10–21, 2008.

[41] Jörg Fischer and Sergei Gorlatch. Turing Universality of Recursive Patterns for
Parallel Programming. Parallel Processing Letters, 12(2):229–246, 2002.

[42] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, and
Hitoshi Matsubara. RoboCup: A Challenge Problem for AI. AI Magazine, 18(1):73–
85, 1997.

[43] Tomoichi Takahashi, Ikuo Takeuchi, Tetsuhiko Koto, Satoshi Tadokoro, and Itsuki
Noda. RoboCup Rescue Disaster Simulator Architecture. In Proceedings of The Robot
Soccer World Cup IV (RoboCup 2000), pages 379–384, 2000.

45

Appendix A

Implementation of some FIPA protocols

using collective operations

A.1 Implementation of the FIPA Recruiting Interaction Protocol
The pseudo code for implementation of FIPA Recruiting Interaction Protocol is shown in
Figure A.1. The code contains plan for initiating Recruiting actions of the Initiator, and
message process plans for the Recruiter, the Receiver and Service Agents.

A.2 Implementation of other FIPA Interaction Protocols
The pseudo-code for implementation of other FIPA Interaction Protocols using collective
operations can be found at the homepage of Yaccai:
http://www.nue.ci.i.u-tokyo.ac.jp/%7Educ/yaccai/

46 Appendix A Implementation of some FIPA protocols using collective operations

// Initiator1

plan init_recruit(task, cond, Receiver)2

send to Recruiter the recruiting_request;3

if got recruiting_agreed from the Recruiter then4

sa_set = get service agents set from Recruiter;5

if empty?(sa_set) then6

failure_no_match7

end if8

end if9

end plan10

11

// Recruiter12

plan processMsg(msg)13

if msg is recruiting_request then14

task, cond, Initiator, Receiver = parse from recruiting_request;15

if proxy_permitted?(Initiator, task, Receiver) then16

send recruiting_agreed to Initiator;17

comm.Bcast(recruiting_request);18

comm1 = GetCommunicator("recruiting_comm");19

service_agents = comm1.Gather(@{my_id});20

comm1.Leave();21

if empty?(service_agents) then22

send empty set to Initiator;23

else24

send all service_agents to Initiator;25

send inform_done_proxy to Receiver;26

end if27

else28

send permission_denied to Initiator29

end if30

end if31

end plan32

33

34

// Service agents35

plan processMsg(msg)36

if msg is recruiting_request then37

cond, task, Receiver = parse from recruiting_request;38

if true?(cond) and can_perform?(task) then39

comm1 = GetCommunicator("recruiting_comm");40

set member variable task_result = perform(task);41

end if42

end if43

end plan44

45

// Designated receiver46

plan processMsg(msg)47

if msg is inform_done_proxy then48

comm1 = GetCommunicator("recruiting_comm");49

result_set = comm1.Gather(@{task_result});50

end if51

end plan52

Fig. A.1. Implementation of the FIPA Recruiting Interaction Protocol

47

Appendix B

Grammar of the Yaccai programming

language

translation_unit ::= include_stmt* (class_decl | agent_class_decl)*

include_stmt ::= "include" string_literal ";"

access_type ::= "public" | "protected" | "private"

class_decl ::= access_type "class" identifier ["extends" "{" identifier_list "}"]

"{"

(method_decl | member_var_decl)*

"}"

agent_class_decl ::= access_type "agentclass" identifier ["extends" "{" identifier_list "}"]

"{"

(method_decl | member_var_decl | plan_decl)*

"}"

member_var_decl ::= access_type ["static"] identifier ["=" expression]

("," identifier ["=" expression])* ";"

method_decl ::= access_type ["static"] "function" identifier "(" identifier_list ")"

stmt_block

stmt_block ::= "{"

statement*

"}"

plan_decl ::= access_type "plan" identifier "(" identifier_list ")"

["precond" "(" expression ")"]

["maintains" "(" expression ")"]

stmt_block

agent_allocation_expr ::= "create" identifier "(" expression_list ")" ["@" expression]

stop_eval_expr ::= "@" "{" expression "}"

belief_expr ::= "belief" (belief_query_expr | belief_remove_expr | belief_add_expr)

("join" belief_expr "on" expression

["as" belief_projection] ["where" expression])*

belief_add_expr ::= "fact" expression

belief_projection ::= identifier ["{" identifier_list "}"]

class_signature ::= string_literal

belief_query_expr ::= "query" class_signature ["as" belief_projection ["where" expression]]

belief_remove_expr ::= "remove" class_signature ["as" belief_projection ["where" expression]]

object_allocation_expr ::= "new" (identifier "(" expression_list ")" ["{" expression_list "}"] |

"{" assignment_list "}")

u_expr ::= primary | "-" u_expr | "+" u_expr | "!" u_expr | "~" u_expr

| object_allocation_expr

| agent_allocation_expr

| belief_expr

| stop_eval_expr

48 Appendix B Grammar of the Yaccai programming language

primary ::= atom trailer*

atom ::= literal | identifier | "(" expression ")"

trailer ::= "(" expression_list ")"

| "[" expression "]"

| "." identifier

expression ::= assignment_expression

assignment_expression ::= (primary assignment_operator)* or_test

assignment_operator ::= "=" | "+=" | "-=" | "*=" | "/=" | (same as other language)

or_test ::= and_test ("||" and_test)*

and_test ::= bo_expr ("&&" bo_expr)*

bo_expr ::= bx_expr ("|" bx_expr)* //(bit or)

bx_expr ::= ba_expr ("^" ba_expr)* // (bit xor)

ba_expr ::= comparison ("&" comparison)* //bit and

comparison ::= s_expr (comp_operator s_expr)*

comp_operator ::= ">" | "<" | "!=" | ">=" | "<=" | "=="

s_expr ::= a_expr ((">>" | "<<") a_expr)* // (shift expression)

a_expr ::= m_expr (("+" | "-") m_expr)*

m_expr ::= u_expr (("*" | "/") u_expr)*

expression_stmt ::= expression ";" | ";"

statement ::= expression_stmt

| if_stmt

| while_stmt

| for_stmt

| do_while_stmt

| foreach_stmt

| continue_stmt

| break_stmt

| return_stmt

| label_decl_stmt

| switch_stmt

| stmt_block

| match_stmt

if_stmt ::= "if" "(" expression ")" statement ["else" statement]

while_stmt ::= "while" "(" expression ")" statement

for_stmt ::= "for" "(" expression_list ";" expression_list ";" expression_list ")" statement

do_while_stmt ::= "do" statement "while" "(" expression ")" ";"

foreach_stmt ::= "foreach" "(" identifier "in" expression ")" statement

continue_stmt ::= "continue" ";"

break_stmt ::= "break" ";"

return_stmt ::= "return" [expression] ";"

label_decl_stmt ::= identifier ":"

switch_stmt ::= "switch" "(" expression ")" "{" (label_decl_stmt | statement)* "}"

match_stmt ::= "match" "(" expression ")" "with" "{"

regex_expr_list "->" statement

("|" regex_expr_list "->" statement)*

"}"

regex_expr_list ::= "*" | expression ["+" | "?" | "*"] ("," expression ["+" | "?" | "*"])*

identifier_list ::= <empty> | identifier ("," identifier)*

expression_list ::= <empty> | expression ("," expression)*

literal ::= int_literal | double_literal | string_literal | char_literal

