
JAWS-2008

エージェント指向プログラミングにおける集団操作の応用

グェン　トアン　ドゥク†a) 竹内 郁雄†b)

Application of collective operations in agent oriented programming language

Nguyen TUAN DUC†a) and Ikuo TAKEUCHI†b)

Abstract. In multiagent systems, cooperation is the process of synchronization, sharing knowledge to

achieve the overall goal. Description of cooperation is a crucial requirement for programmers to realize an

intelligent multiagent system. In this paper, we propose a method for describing agents’ cooperation pro-

cess using collective operation, a concept in parallel programming. The method is implemented in a new

agent oriented programming language called Yaccai. Using collective operations, programmer can easily

create multiagent systems with complex cooperation schemes. Our experiment shows that, the application

of collective operations is very effective for developing distributed multiagent systems.

Keywords. collective operation, cooperation model, agent oriented programming, language design,

agent execution model

1 Introduction

A multiagent system (MAS) is a system con-

sists of many autonomous intelligent agents which

interact by sending/receiving messages of several

types. Multiagent systems can be used for model-

ing problems which are difficult or impossible for

a single monolithic program to solve. The main

aspects that give multiagent systems this power-

ful problem solving ability are autonomy and co-

operation. Each agent in a multiagent system is

an autonomous intelligent entity that can react to

events and adapt to the environment. On the other

hand, cooperation is a very important process in

multiagent systems which associates agents in a

main objective of the system: achieving the over-

all goals. Agents cooperate with other agents by

sharing knowledge and exchanging useful informa-

tion to solve the problem. Especially, in software

multiagent systems which are normally distributed

across several machines, cooperation can be viewed

†東京大学 情報理工学系研究科
a) E-mail: duc@nue.ci.i.u-tokyo.ac.jp

b) E-mail: nue@nue.org

as the process of synchronization and passing mes-

sages between agents in order to coordinate and

sharing knowledge about the outside environment.

Therefore, it is important to investigate the appli-

cation of message passing model into the descrip-

tion of cooperation process in multiagent systems.

Since cooperation is essential for multiagent

systems, many studies on agent cooperation

model [5] [8] and cooperation language [3] [4] have

been done. However, these languages and models

either do not exploit the parallel distributed nature

of MAS or do not take care of autonomy, the main

characteristic of agent. Moreover, even the concept

of agent is similar to actor in the Actor Model [2], a

model that has influenced many distributed object

oriented programming languages, there is a lack of

effort for applying ideas in parallel distributed pro-

gramming and distributed object oriented program-

ming in MAS.

In this paper, we propose an approach to model

agents’ cooperation process using collective opera-

tion, a concept in the Message Passing Interface

(MPI) [6], a famous parallel distributed program-

ming interface and library. The description of many

JAWS-2008 予稿集

cooperation schemes is mapped to collective oper-

ations in a new agent oriented programming lan-

guage called Yaccai (Yet another concurrent co-

operating agent infrastructure). Using collective

operations, programmers can easily create multi-

agent systems with complex cooperation protocols.

Moreover, our model supports dynamic creation

and destruction of communicators (a concept refers

to processes group in MPI) which makes the for-

mation and dissolution of agent groups (agent so-

cieties) easier. Our experiment shows that, the ap-

plication of collective operations is very effective for

developing distributed multiagent systems.

The remainder of this paper is organized as fol-

lows. In Section 2, we introduce related work on

cooperation model in multiagent systems and com-

pare to our model. Section 3 presents method for

abstracting agent cooperation by using collective

operations and language constructs for represent-

ing cooperation schemes in Yaccai. The execution

and communication model of agents are described

in Section 4. We discuss about the application

of our cooperation model, especially for deriving

global knowledge of MAS in Section 5. Section 6

gives some experimental results for evaluating the

cooperation model and language. Finally, Section 7

discusses about future work and concludes the pa-

per.

2 Related work

Cooperation models such as joint-intentions

model [5] or teamwork [7] allow the description of

global goal for the entire multiagent system and

coordination scheme is automatically derived from

the team’s goal. But it is difficult to ensure the au-

tonomy of each agent because all agents have the

same goal and mental state (i.e., belief, desire and

intention, the BDI model [1]). Moreover, it is diffi-

cult to decentralize the system using these models

because maintaining global goals and (implicitly)

shared mental state leads to many problems in con-

sistency and communication cost.

Michael Schumacher proposed a model for inter-

agent coordination, called ECM [8] and a program-

ming language to specify agent hierarchy. Agents

participate in many agent societies, called “blops”.

Each blop is a group of agents, in which agents

can easily communicate with each other and even

broadcast messages when they want. A multiagent

system is therefore a hierarchy of blops which con-

tains many agents, each agent is a computational

process. However, ECM and its languages do not

support the description of mental state of agent,

agent itself needed to be specified by another pro-

gramming language. While ECM utilizes the idea

of process group in parallel programming to model

agent group (“blop” is similar to “communicator”

in MPI), it does not exploit full power of collective

operations (it only supports one collective opera-

tion, i.e., broadcasting of messages within a blop).

Our system combines the advantages of agent ori-

ented programming (AOP) and the coordination

models mentioned above. The system ensures the

autonomy of agents and provides constructs for de-

scription of cooperation, communication between

agents. Cooperation of agents is abstracted by us-

ing collective operations while mental state and rea-

soning cycle can be specified directly in the our

AOP language. Agents may freely participate in

communicators and within a communicator, agents

can send messages to an individual or broadcast

to all agents in the communicator. Furthermore,

agent program may use “reduce”, “gather”, etc.

operations to derive global knowledge of the en-

tire multiagent system. With these characteristics,

our language fixed the drawbacks of previous frame-

works: it maintains the autonomous computational

model of multiagent system while providing con-

structs for specifying cooperation schemes. Put in

other words, by introducing “communicator” and

“collective operations” in AOP, we can abstract the

cooperation process of agents while autonomy of

agents and efficiency of message passing are ensured

by our new communication and execution model.

3 Abstracting cooperation by col-
lective operations

Collective operations are operations that involve

JAWS-2008エージェント指向プログラミングにおける集団操作の応用

in many processes and data of these processes of

execution. MPI [6] defines many collective opera-

tions such as barrier, broadcast, gather, reduce, ...

to support synchronization and cooperation of pro-

cesses which may run in different hosts and differ-

ent operating systems. For example, broadcasting

message from a process (or an agent) to all pro-

cesses (agents) in a group is a collective operation

because all processes are affected by the operation

(by receiving the message). Since collective opera-

tions give effect to many processes, it is similar to

cooperation of many agents. Therefore, collective

operation can be used to model the agent coopera-

tion in MAS.

Collective operations deal with processes in a

same group which called a “communicator” in MPI.

A communicator is therefore a group or society of

agents in our model. When an agent participates

into a communicator, it can invokes collective oper-

ations within the communicator. An agent can eas-

ily join a communicator by calling a method named

“GetCommunicator”:

comm = GetCommunicator(comm_name,

msg_listener);

where comm name is a string represents the name

(identifier) of the communicator and msg listener

is a plan (procedure) to process incoming messages.

The agent that invoked the above code will be

a member of the communicator named comm name

(another agent can join this communicator by in-

voking the GetCommunicator method with the same

communicator name).

After joining a communicator, an agent can initiate

collective operations in that communicator. The

syntax and semantics of collective operations that

we support is shown in Table 1.

The “barrier” operation in Table 1 is a tool for

synchronizing all agents in a communicator. The

message listener (msg listener) does not need to

do anything for barrier operation (no message is

passed to the listener when barrier operation is in-

voked) because the barrier is merely a tool for syn-

chronizing agents (i.e., force agents to wait until

the barrier method are invoked by all agents in the

1 agentclass HelloAgent {

2 public m_comm;

3 public function HelloAgent() {

4 m_comm = Environment.GetCommunicator(

5 "World", MsgListener);

6 }

7 public plan MsgListener(msg) {

8 id = -1;

9 match msg.Value with {

10 "Hello from", @{id}, "at", @{addr} -> {

11 belief fact new {rank=id, host=addr};

12 }

13 }

14 }

15 public plan act() {

16 myRank = Environment.GetRank();

17 m_comm.Bcast("Hello from " + myRank +

18 " at " + Environment.Hostname());

19 }

20 }

21

22 class SimpleMAS {

23 public static function Main() {

24 a1 = create HelloAgent() at "localhost";

25 a2 = create HelloAgent() at "somehost.com";

26 }

27 }

Fig. 1 A simple multiagent system definition

communicator). The same thing happens for “re-

duce” or “gather” operation: the expression is au-

tomatically evaluated at each agent and then the

operator will be applied to the results or all results

are collected into a result set, the message listener

is not invoked. On the other hand, in “broadcast”

or “scatter” operation, the message will be passed

to message listener and it is the responsibility of

the programmer to describe what to do when an

agent received a message. By this way, an agent

with reactive capability can be easily created: the

action that the agent takes when an event occurred

can be specified in the message listener.

An agent can leave from a communicator by invok-

ing “Leave” method on the communicator:

comm.Leave();

Messages in the communicator will not be passed

to the message listener any more after the agent

leaved the communicator (even though, the agent

may participate in the message passing process of

the execution environment and act as a router to

forward messages to another agent in the system

without awareness of the programmer).

Fig. 1 shows an example of a multiagent system

definition in Yaccai. Once the agent is created,

JAWS-2008 予稿集

Table 1 Collective operations

Operation Meaning Example

Barrier Synchronizing all agents in the communicator comm.Barrier(“barrier name”);

Broadcast Broadcasting message to all agents in comm. comm.Bcast(msg);

Reduce Evaluate expression at each agent and apply operator on

the result set in round-robin manner

comm.Reduce(operator, expression);

Gather Evaluate expression at each agent then gather the results

to an agent

comm.Gather(expression);

Scatter Scatter the array of messages to all agents in comm comm.Scatter(array of msg);

the constructor will be called and then the plan

“act” will automatically be executed. Each agent

is mapped to a process (including process in remote

host). The main plan (“act”) and the plan for re-

acting to incoming messages (“MsgListener”) are

executed in the same thread but are scheduled by

the scheduler of the execution environment bring-

ing an image that they are executed in different

threads. Each agent in the example simply broad-

casts a “Hello” message and its identifier (rank) to

others. When an agent received “Hello” message,

it stores the host address of the sender into belief-

base. The complete grammar of the language is

available at the Yaccai’s homepage. 1)

Collective operations in normal parallel dis-

tributed programming library such as MPI must

be invoked in parallel by all processes that are par-

ticipating in the operation. This requirement en-

sures the efficiency for the execution of collective

operations but it causes difficulty in maintaining

the autonomy of each process since it requires all

processes invoke the operation at the same time.

In our system, we allow collective operations to be

invoked by just one agent and other agents will au-

tomatically participate in the operations. Table 2

gives a list of differences between our model and

MPI.

Collective operations allow agent to effectively co-

operate with other agents in the same communica-

tor. It makes the process of deriving global informa-

tion easier. For example, an agent can get the sum

of ID of all agents in the system by invoking a re-

duce operation: “comm.Reduce(SUM, belief query

ID);”. The expression “belief query ID” is evalu-

ated at each agent and the results are summed up

1) http://www.nue.ci.i.u-tokyo.ac.jp/%7Educ/yaccai

Table 2 Differences between Yaccai and MPI

MPI Yaccai

Code All processes have

same code

Can be different

for each agent

Collective oper-

ations syntax

Invoked by all pro-

cesses (same code)

Invoked by an

agent

Can leave from a

communicator

No Yes

Fig. 2 Communication model of Yaccai.

The circle “ai” denotes the reasoning layer,

the circle “mi” represents the message pass-

ing layer of agent i.

by the operator SUM. Section 5 shows more about

application of collective operations. It is important

to note that, collective operations abstract the co-

operation of agents, the abstraction simplifies the

description of cooperating process.

4 Execution model for collective
operations

The execution of collective operation is not sim-

ple because it involves in all agents while the oper-

ation is invoked by just one agent. To accomplish

this goal, we propose a new communication model

for multiagent systems. The model ensures the au-

tonomy of agent while providing message passing

JAWS-2008エージェント指向プログラミングにおける集団操作の応用

API for collective operations and cooperation.

Fig. 2 shows the communication model of our

system. Each agent is divided into two layers:

the agent reasoning layer and the message pass-

ing layer. Reasoning layer contains user’s code for

the agent program while message passing layer con-

tains code of the execution environment. There-

fore, users do not have to write code for message

passing, the system provides primitives for message

passing and collective operations. The message pro-

cessing plan and main plan are in agent reasoning

layer. When messages arrived at the message pass-

ing layer, it is delivered by the message dispatcher

to the appropriate message processing plan. The

plan is registered when the agent joined the com-

municator (by calling GetCommunicator as shown

in Section 3). When the reasoning layer’s code in-

vokes send or broadcast method of communicator,

the message will be passed to the message passing

layer of the same agent first, and it is actually sent

to destination in this layer.

The separation of agent’s reasoning code and

message passing code leads to some advantages.

First, it ensures the autonomy of agent because

agent’s reasoning code can be executed in one

thread and message passing code in another thread

of execution. The programmer can easily specify

proactive reasoning process of agent without con-

cern about the message passing process (reactive

reasoning can be specified inside the message lis-

tener of each communicator). Second, it supports

the implementation of collective operations with

different semantics from the semantics in normal

parallel distributed programming: collective oper-

ations can be invoked by just one agent, not all

agents in parallel. The message passing layer does

the job of passing messages independently from

agent’s reasoning code. That is why collective op-

eration may be invoked by one agent (at the agent

reasoning layer) but the operation is performed in

all other agents (in message passing layer and if

needed, in the message processing plan). Finally,

message passing optimization can be done by the

system in message passing layer and user code can

enjoy these optimizations without any effort.

We have implemented the language interpreter

and execution environment to support the proposed

communication model. Each agent is mapped to

one process in the operating system which can be

in a remote host. Agent can freely create new

agent by calling the operator “create” and spec-

ify host name in which the new agent will be exe-

cuted. Each agent contains several threads of exe-

cution. One thread executes the agent’s reasoning

code and zero or more threads execute the mes-

sage passing layer’s code (the code is provided by

the execution environment). When messages come,

they are stored into message queue of the agent and

then the message dispatcher will fetch the messages

and deliver to the appropriate communicator’s mes-

sage processing plan. This execution model is very

suitable for modeling autonomous pro-active agent.

An agent is said to be pro-active if it has its own

goal and actively makes action to achieve the goal.

On the other hand, agent must also deal with sud-

denly happened events by reacting to events it re-

ceived. This type of reasoning is called reactive

reasoning. The message processing plan is respon-

sible for reactive reasoning while the main plan is

the place where pro-active reasoning code could be

described. By this way, programmers can easily

model autonomous agent with pro-active reasoning

and reactive reasoning capabilities.

5 Application of collective opera-
tions

5 1 Deriving global knowledge of multia-

gent systems

Global knowledge is knowledge involved in en-

tire multiagent systems, for instance, the minimum

value of a particular property of agents. Data

that is distributed across many agents may be con-

sidered as global knowledge because gathering of

the data involves in many agents. These kinds of

knowledge can be easily obtained by using collec-

tive operations.

For example, a Vacuum Cleaner agent can know

how many agents are in idle state by invoking the

JAWS-2008 予稿集

following reduce operation:

comm.Reduce(Sum, (belief query idle)[0]);

where Sum is an operator of 2 operands which re-

turns the sum of these operands. The belief-base

query expression is evaluated at each agent and re-

turns a collection (contains only one element) that

is 1 if the agent in idle state and 0 otherwise. The

operator Sum is applied to the result set in a par-

ticular order (the order of the application depends

on the reduce algorithm, such as tree-like or linear

algorithm).

Another method to achieve the same goal is using

the gather operation to gather all idle state of other

agents:

comm.Gather((belief query idle)[0]);

The gather operation returns a collection contains

values representing idle state of all agents in the

communicator “comm”.

5 2 Synchronization

Sometimes agents need to be synchronized to

perform some actions. Synchronization may be

done by collective operations such as barrier or

wait. For instance, an agent may wait for all

other agents to call the method comm.Barrier(

“barrier name”) (with the same barrier name) by

invoking comm.Barrier("barrier name"). The

agent will be blocked until all other agents in the

same communicator also called this method.

The only drawback is that, it is the responsibility of

the programmer to ensure that all agents must call

the synchronization methods, otherwise the agent

first called to these methods will be blocked indefi-

nitely (while in MPI this is automatically achieved

since all processes have the same code when they

are calling barrier).

6 Evaluation

In this section, we provides some experiment

results to evaluate our language and cooperation

model. We use Vacuum Cleaner problem as a typ-

ical multiagent system benchmark to evaluate our

language. The result shows that it is easy to real-

ize a Vacuum Cleaner agents team with many com-

plex cooperation schemes by using the framework.

Moreover, the result also confirms the effectiveness

of collective operation as a tool for cooperation.

We built a multiagent system for simulation of

Vacuum Cleaner problem. Each Vacuum Cleaner

is represented as a software agent whose capabil-

ities are move and clean. The simulation server

constructs a virtual space which is a grid of 20 x 30

cells and contains many cells that have dirt. Agent

can only move up, down, left or right (one step

for each cycle) in the virtual space and it receives

information about the current position (e.g., con-

tains dirt or not) from the server. The agent can

only clean a unit of dirt in each cycle by sending a

“clean” command. A position (a cell) in the virtual

space may contain many units of dirt. The server

is written in C# while the agent is written in our

language (complete source code for the agent can

be viewed at the Yaccai’s homepage2)). At each cy-

cle, the server waits until all agents have issued a

command, then it advances the simulation one step

(an agent can only issue one command for each cy-

cle). Communication between agents is done by

using collective operations. A game lasts for 1000

cycles; at each cycle, the server reports the score of

the game by the following formula:

Score =
Total units of dirt cleaned

Total units of dirt
× 100(1)

In the first experiment, we created a multiagent

system which contains many simple agents: the

agents do not cooperate with each other, they only

send/receive commands and information from the

simulation server. The agents simply scan the vir-

tual space by moving horizontally first then go

up/down one row when they could not move in hori-

zontal direction and change the horizontal direction

from left-right to right-left and vice versa.

In the second experiment, we created a multiagent

system which contains agents that cooperate us-

ing broadcast operation. The agents use the same

strategy in the first experiment to move around the

virtual space. When an agent found a cell has dirt,

it will broadcast the position of the cell and the

2) http://www.nue.ci.i.u-tokyo.ac.jp/%7Educ/yaccai

JAWS-2008エージェント指向プログラミングにおける集団操作の応用

0

10

20

30

40

50

60

70

80

3 4 5 8 16

Number of agents

S
c
o
r
e

nocomm reduce bcast

Fig. 3 Average score of 5 times of simulation on map dense

0

20

40

60

80

100

120

3 4 5 8 16

Number of agents

S
c
o
r
e

nocomm reduce bcast

Fig. 4 Average score of 5 times of simulation on map sparse

units of dirt contained there to all other agents.

When received message from other agents, an agent

will store the information into its belief-base and

determine if it should go to the cell to clean or not.

The heuristic to determine to go or not is simple:

if the agent is in idle state and the number of units

of dirt is bigger than 4 times of the distance be-

tween current position to dirt’s position, the agent

will go to dirt’s position. On the way to the dirt, if

the agent found another place contains dirt, it will

clean the place immediately (and broadcast the po-

sition to other agents). When an agent successfully

cleaned a position, it also broadcasts the informa-

tion to other agents. If the agent is not in idle

state, it simply stores the cell in its belief-base and

when it becomes idle, it will query the belief-base

for dirty cells and go to clean. An agent will re-

move the dirt’s position from its belief-base when

it received the clean message from other agents.

In the third experiment, we created a multiagent

system which contains agents that use similar co-

operation scheme to the agent in the second exper-

iment except that when an agent found dirt, it uses

reduce operation to know the idle agent nearest to

it. Then it sends the information about the cell to

that agent only (not broadcast to all agents).

We executed the simulation with 2 scenarios

(maps): map dense contains large amount of dirt

that broadly distributed across many cells in the

virtual space (the map has many cells that con-

tains dirt, so it is dense of dirt), map sparse con-

tains large amount of dirt that comparatively con-

centrated on a region in the virtual space. The ex-

periment is carried on a cluster of 20 machines (In-

tel Pentium 4, 2.8GHz, 2GB RAM, Linux 2.6.18)

connected by Gigabit ethernet to guarantee that

each agent is executed on a different host. The

score is the average score of 5 times of simulation

reported at the end of each simulation (i.e., at the

cycle 1000).

Fig. 3 and Fig. 4 show the score for the

non-communication agents, broadcast agents and

reduce agents with 2 maps: map dense and

map sparse respectively. When the number of

agents increased, the score also increased (the simu-

lations on map sparse with 16 broadcast and reduce

agents reached the highest possible score (100) af-

ter about 900 cycles, i.e., the agents do nothing in

about 100 cycles left). Standard deviation is very

small (as shown in the figures) because we do not

use any random parameter. We also performed the

simulation with 32 agents run on 16 hosts (each

host has 2 agents), but we do not show the teams’

score in the graphs because for map sparse they

reached the highest score too early before the last

cycle.

In map dense, the broadcast agents do not per-

form very well because they can not scan entire

the space to find dirt and do too many useless

moves. The broadcast agents seem to concentrate

JAWS-2008 予稿集

on a place at each time (because when received

broadcast message they often go to the dirt place

if they are in idle state or when they become idle,

they will query the belief-base for the cell and go

to clean). The reduce agents have the same per-

formance with non-communication agents because

when discovered a position has dirt, an agent does

not broadcast message to all agents, only one agent

is affected by the message. When there are many

places with dirt, the agents are busy (not in idle

state) and they will not react to messages from

other agents immediately so the behavior of the

team is similar to non-communication team. In

the map sparse map, the situation is different. The

broadcast team has the best performance because

they do not spend a lot of time in idle moves. They

can concentrate on a dirt place immediately when

an agent found the dirt place. The reduce team

also has relatively good performance because when

agents are in idle state, they will react to messages

from other agents immediately so the behavior is

similar to broadcast team. Agents team without

cooperation has poor performance in this situation

because agents have to find dirt independently and

do many useless moves to scan the virtual space.

The result confirms that collective operations are

good for cooperating agents: the agents that use

collective operations to cooperate obtained high

score when cooperation is important to the prob-

lem. In situations where cooperation becomes very

important (e.g., in the map sparse), collective op-

eration is very effective because it simplifies the de-

scription of cooperation of agents. Even in situa-

tions where cooperation is not important (e.g., in

the map dense), the agent team uses collective op-

eration may also achieve good performance if it uses

appropriate cooperation scheme to reduce the risk

of “over-cooperating” (i.e., too concentrated on a

region).

7 Conclusion and future work

We have presented a new approach for model-

ing cooperation process of agents using collective

operations. The communication model underlying

our system ensures the autonomy of agents while

providing full support for message passing and co-

ordination. The system is therefore suitable for de-

veloping multiagent system, in which agents are au-

tonomously, pro-actively and reactively taking ac-

tions while cooperating with others to achieve the

goal. We also discussed about the application of

our model in deriving global knowledge and shows

the experiment result that confirms the effective-

ness of our cooperation model. We currently broad-

cast messages to all agents at the message passing

layers (when broadcast operation is invoked) and

ignore the messages if the agent is not in the cor-

responding communicator. In the future, it should

be better if we manage the communicator informa-

tion and only broadcast messages to agents that

are in the communicator. To achieve this, we need

to use a centralized agent to manage communica-

tor’s data or replicate the data at each agent. The

preferable method is replication of data, but it may

lead to the data consistency problem so the con-

sistency model must be investigated. Furthermore,

we are going to implement several real-world multi-

agent system benchmarks (such as RobocupSoccer

or RobocupRescue agent team) to investigate the

effectiveness of the language and the communica-

tion model.

References

[1] A. Rao and M. Georgeff, “Modeling rational agents

within a BDI architecture”, Proceedings of the KR91.

[2] Carl Hewitt, “A Universal Modular Actor Formal-

ism for Artificial Intelligence”, Proc. of 3rd Intl. joint

Conf. on Artificial Intelligence, IJCAI 1973.

[3] Foundation For Intelligent Physical Agents, “Fipa

Communicative Act Library Specification, 2001”,

http://www.fipa.org/specs/fipa00037/XC00037H.html

[4] Finin, T. Weber, et al., “Specification of the KQML

agent-communication language”, Technical Report

EIT TR 92-04, Enterprise Integration Technologies,

1992.

[5] Jennings, N. R, “Controlling cooperative problem

solving in industrial multi-agent systems using joint

intentions”, Artificial Intelligence, 75(2).

[6] The Message Passing Interface, http://www-unix.mcs.anl.gov/mpi/

[7] Pynadath, D., et al., “Toward team-oriented pro-

gramming”, Proc. of the ATAL’99.

[8] Michael Schumacher, “Objective coordination in

multi-agent system engineering”, LNAI 2039.

