
Abstraction of agent cooperation in agent
oriented programming language

Nguyen Tuan Duc and Ikuo Takeuchi

The University of Tokyo, Japan
duc@nue.ci.i.u-tokyo.ac.jp, nue@nue.org

Abstract. Collective operation is a concept of parallel programming in
which many processes participate in an operation. Since collective opera-
tions are suitable for modeling the coordination of many processes, they
can be used to model cooperating agents in a multiagent system. In this
paper, we propose an agent oriented programming language that exploits
collective operations to abstract the cooperating process of agents. We
also present a method for implementing collective operations while main-
taining the autonomous computational model of agent. Our experiment
shows that our language and cooperation model have many advantages
in developing multiagent systems.. . .

1 Introduction

In multiagent system (MAS), agents need to exchange useful information with
each other in order to reach an agreement or collaborate for achieving a goal. The
process of communicating and exchanging knowledge is known as cooperation.
Cooperation is a crucial requirement in MAS because without cooperation the
system is simply a set of separated agents and has no ability of collaborating to
reach the goal.

On the other hand, in agent oriented programming (AOP), a new program-
ming paradigm proposed by Y. Shoham [1], agent is modeled as an autonomous,
reactive and pro-active entity. Because of this autonomous computational model,
the integration of autonomous agent and cooperating agent is not simple. Agents
need to be autonomous, however, they also need to collaborate in order to achieve
the goals.

In this paper, we propose an agent oriented programming language that
supports the cooperation of agents. The language uses the concept of collec-
tive operation in parallel distributed programming to abstract the cooperating
process of agents. Moreover, it maintains the autonomy of agent and provides
constructs for describing agent’s mental state (i.e., belief, desire, intention [3]).
We have implemented a framework called Yaccai (Yet Another Concurrent Co-
operating Agent Infrastructure) to support the execution of multiagent systems
written in our language. The communication model underlying our language’s
execution environment ensures the autonomy of each agent while providing full

support for message passing. Our experiment shows that by using collective op-
erations, global knowledge, an important element in multiagent systems, can be
easily derived.

The rest of this paper is organized as follows. Section 2 compares our system
with existing AOP languages and cooperation models. Section 3 presents our
language design and language constructs for abstraction of agent cooperation
using collective operations. Section 4 describes the execution model that supports
the implementation of collective operations. We discuss about the application of
collective operations in Section 5. Section 6 shows empirical results for evaluating
the system. Finally, Section 7 discusses about future work and concludes.

2 Related work

Research on AOP language has focused on how an autonomous agent can be
described in the language, that is, how to express the mental state (the intra-
agent aspects) of an agent efficiently and easily using constructs provided by the
language [1][4][2]. However, existing agent oriented programming languages do
not concentrate on the communication model of agents and do not pay enough
attention to abstraction of agent cooperation despite the fact that cooperation
is a very important issue in MAS.

Cooperation models such as joint-intentions model [5] or teamwork [7] allow
the description of global goal for the entire multiagent system and coordination
scheme is automatically derived from the team’s goal. But it is difficult to ensure
the autonomy of each agent because all agents have the same goal and mental
state.

Michael Schumacher proposed a model for inter-agent coordination, called
ECM [8] and a programming language to specify agent hierarchy. Agents par-
ticipate in many agent societies, called “blops”. Each blop is a group of agents,
in which agents can easily communicate with each other and even broadcast
messages when they want. However, ECM and its languages do not support
the description of mental state of agent, agent itself needed to be specified by
another programming language.

Our system combines the advantages of agent oriented programming lan-
guages and the coordination models mentioned above. The system ensures the
autonomy of agents and provides constructs for description of cooperation, com-
munication between agents.

3 Language design and abstraction of agent cooperation

3.1 Constructs for modeling mental state and reasoning cycle

Our language is agent oriented because it supports the description of mental
state of agents and automatically generates reasoning cycle (the cycle of sense
- reasoning - act). The language provides constructs to define classes and agent

classes like in normal object oriented languages. Each agent has its own inde-
pendent integrated belief-base to avoid the overhead of synchronizing common
belief-base and ensure the autonomy of the agent. Belief-base query/update op-
erations are integrated in the language as language constructs that are similar
to LINQ [9].

1 agentclass HelloAgent {

2 public m_comm;

3 public function HelloAgent() {

4 m_comm = Environment.GetCommunicator(

5 "World", MsgListener);

6 }

7 public plan MsgListener(msg) {

8 id = -1;

9 match msg.Value with {

10 "Hello from", @{id}, "at", @{addr} -> {

11 belief fact new {rank=id, host=addr};

12 }

13 }

14 }

15 public plan act() {

16 myRank = Environment.GetRank();

17 m_comm.Bcast("Hello from " + myRank +

18 " at " + Environment.Hostname());

19 }

20 }

21

22 class SimpleMAS {

23 public static function Main() {

24 a1 = create HelloAgent() at "localhost";

25 a2 = create HelloAgent() at "somehost.com";

26 }

27 }

Fig. 1. A simple multiagent system definition Fig. 2. Communication model

Reasoning cycle of agent is automatically realized when agent program de-
fines a special plan with name “act”. Fig. 1 shows an example of a multiagent
system definition in our language. Once the agent is created, the constructor will
be called and then the plan “act” will automatically be executed. Each agent
in the example simply broadcasts a “Hello” message and its identifier (rank) to
others. When an agent received “Hello” message, it stores the host address of the
sender into belief-base. The main program (the SimpleMAS class) uses create
statement to create agents at desired host. Complete grammar of the language
is available at the Yaccai’s homepage1.

3.2 Abstraction of agent cooperation

We present a new approach to model the cooperating process of agents, that
is, using collective operations to abstract cooperation. Collective operations are
operations that involve in many processes and data of these processes of execu-
tion. For instance, broadcasting a message to all agents in a group is a collective
1 http://www.nue.ci.i.u-tokyo.ac.jp/%7Educ/yaccai

operation because all agents are affected by the operation. MPI[6], a famous
parallel distributed programming interface, defines many collective operations
such as barrier, broadcast, gather, reduce, ... to support synchronization and
cooperation of processes.

We use the concept of “communicator” in MPI (that is similar to “blob” in
ECM [8]) to represent agent group, agent can freely participate into a group by
invoking the following method:

comm = Environment.GetCommunicator("comm_name", listenerPlan);

This method will get the communicator named “comm name” and set “listen-
erPlan” as the message processing plan for this communicator. Every message
comes to this agent from the communicator will be passed to listenerPlan to
be processed.
An agent can leave from a communicator by invoking the “Leave” method on
the communicator:

comm.Leave();

Messages come from this communicator will not be passed to “listenerPlan”
anymore.
Agents form group of agents when they participate in the same communicator
(by invoking the method GetCommunicator with the same communicator name).
The concept of “communicator” in our language is the same as in MPI but

Table 1. Collective operations

Operation Meaning Example

Barrier Synchronizing all agents in the communicator comm.Barrier(“barrier name”);
Broadcast Broadcasting message to all agents in comm. comm.Bcast(msg);
Reduce Evaluate expression at each agent and apply

operator on the result set in round-robin man-
ner

comm.Reduce(operator, expression);

Gather Evaluate expression at each agent then gather
the results to an agent

comm.Gather(expression);

Scatter Scatter the array of messages to all agents in comm comm.Scatter(array of msg);

collective operations’ syntax and semantics are different. Collective operations
in MPI must be invoked in parallel by all processes that are participating in the
operation. This requirement ensures the efficiency for the execution of collective
operations but it causes difficulty in maintaining the autonomy of each process
since it requires all processes invoke the operation at the same time. In our
system, we allow collective operations to be invoked by just one agent and other
agents will automatically participate in the operations. For example, an agent
may invoke the following method to broadcast message to all agents in the same
communicator:

comm.Broadcast(message);

Table 1 shows the list of collective operations that we support.
Collective operations allow agent to effectively cooperate with other agents in
the same communicator. It makes the process of deriving global information
easier. For example, an agent can get the sum of ID of all agents in the sys-
tem by invoking a reduce operation: “comm.Reduce(SUM, belief query ID);”.
The expression “belief query ID” is evaluated at each agent and the results are
summed up by the operator SUM. Section 5 shows more about application of col-
lective operations. It is important to note that, collective operations abstract the
cooperation of agents, the abstraction simplifies the description of cooperating
process.

4 Communication model and execution environment

The execution of collective operation is not simple because it involves in all agents
while the operation is invoked by just one agent. To cope with this problem, we
use a new execution and communication model for agents as shown in Fig. 2.
Each agent is divided into two layers: the agent reasoning layer and the message
passing layer. Reasoning layer contains user’s code for the agent program while
message passing layer contains code of the execution environment (the system
provides primitives for message passing and collective operations). The former
contains exactly one thread while the later may contain several threads of exe-
cution (each agent is mapped to a process, possibly in a remote host). When the
reasoning layer’s code invokes send or broadcast method of communicator, the
message will be passed to the message passing layer of the same agent first, and
it is actually sent to destination in this layer. The message processing plan is
responsible for reactive reasoning while the main plan is place where pro-active
reasoning code could be described. By this way, programmers can easily model
autonomous agent with pro-active reasoning and reactive reasoning capabilities.

The separation of agent’s reasoning code and message passing code supports
the implementation of collective operations with different semantics from se-
mantics in normal parallel distributed programming: collective operations can
be invoked by just one agent, not all agents in parallel because the message pass-
ing layer does the job of passing messages independently from agent’s reasoning
code.

5 Application of collective operations

Global knowledge is knowledge that involves in entire multiagent systems, for
instance, the minimum value of a particular property of agents. Data that is
distributed across many agents may be considered as global knowledge because
gathering of the data involves in many agents. These kinds of knowledge can be
easily obtained by using collective operations.
For example, a Vacuum Cleaner agent can know how many agents are in idle
state by invoking the following reduce operation:

comm.Reduce(Sum, (belief query idle)[0]);

where Sum is an operator of 2 operands which returns the sum of these operands.
The belief-base query expression is evaluated at each agent and returns a col-
lection (contains only one element) that is 1 if the agent in idle state and 0
otherwise. The operator Sum is applied to the result set in a particular order
(the order of the application depends on the reduce algorithm, such as tree-like
or linear algorithm).
Another way to achieve the same goal is using the gather operation to gather
idle state of all agents:

comm.Gather((belief query idle)[0]);

The gather operation returns a collection contains values representing idle state
of all agents in the communicator “comm”.

6 Evaluation

In this section, we provide some experiment results to evaluate our language and
cooperation model.

We built a multiagent system for simulation of Vacuum Cleaner Robot prob-
lem. Each Vacuum Cleaner is represented as an agent whose capabilities are
move and clean. The simulation server constructs a virtual space which is a grid
of 20x30 cells; each cell contains zero or more units of dirt. Agent can only move
up, down, left or right (one step for each cycle) in the virtual space and it re-
ceives information about the current position (e.g., number of units of dirt in
the cell) from the server. The agent can only clean a unit of dirt in each cycle
by sending a “clean” command. The Vacuum Cleaner agent team is written in
our language (complete source code for the agent can be viewed at the Yaccai’s
homepage 2). A game lasts for 1000 cycles; at each cycle, the server reports the
score of the game by the following formula:

Score =
Total units of dirt cleaned

Total units of dirt
× 100 (1)

In the first experiment, we created a multiagent system which contains 3 sim-
ple agents: the agents do not cooperate with each other, they only send/receive
commands and information from the simulation server. The agents simply scan
the virtual space by moving horizontally first then go up/down one row when
they could not move in horizontal direction and change the horizontal direction
from left-right to right-left and vice versa.
In the second experiment, we created a multiagent system which contains 3
agents that cooperate using broadcast operation. The agents use the same strat-
egy in the first experiment to move around the virtual space. When an agent
found a cell has dirt, it will broadcast the position of the cell and the units of dirt
2 http://www.nue.ci.i.u-tokyo.ac.jp/%7Educ/yaccai

contained there to all other agents. When received message from other agents,
an agent will store the information into its belief-base and determine if it should
go to the cell to clean or not. When an agent successfully cleaned a position,
it also broadcasts the information to another agents. An agent will remove the
dirt’s position from its belief-base when it received the clean message from other
agents.
In the third experiment, we created a multiagent system which contains 3 agents
that use similar cooperation scheme to the agent in the second experiment except
that when an agent found dirt, it uses reduce operation to know the nearest idle
agent. Then it sends the information about the cell to that agent only (not
broadcast to all agents).

Table 2. Average score of 5 times of simulation

Map NoComm Bcast Reduce

map dense 32.7(±0) 24.28(±0) 32.2 (±0.3)
map sparse 75.22(±0) 90.91(±0.5) 86.6 (±0.1)

Table 2 shows the score for the non-communication agents, broadcast agents
and reduce agents in our experiment with two scenarios: map dense contains
large amount of dirt that broadly distributed across many cells in the virtual
space, map sparse contains large amount of dirt that comparatively concentrated
on a region in the virtual space. The experiment is carried on a cluster of 6
machines connected by Gigabit ethernet to guarantee that each agent is executed
on a separate machine. The score is the average score of 5 times of simulation
reported at the end of each simulation, the numbers after symbol ± inside the
parenthesis are standard deviations (standard deviation is very small because
we do not use any random parameter).

In map dense, the broadcast agents do not perform very well because they can
not scan entire the space to find dirt and do too many useless moves. They seem
to concentrate on a place at each time (because when received broadcast message
they often go to the dirt place if they are in idle state or when they become idle,
they will query the belief-base for the cell and go to clean). The reduce agents
have the same performance with non-communication agents because only one
agent is affected by the message when a dirt position is found. When there
are many places have dirt, the agents are busy (not in idle state) and they
will not react to messages from other agents immediately so the behavior of
the team is similar to non-communication team. In the map sparse map, the
situation is different. The broadcast team has the best performance because
they do not spend a lot of time in idle moves. They can concentrate on a dirt
place immediately when an agent found the dirt place. The reduce team also
has relatively good performance because when agents are in idle state, they will

react to messages from other agents immediately so the behavior is similar to
broadcast team. Agents team without cooperation has poor performance in this
situation because agents have to find dirt independently and do many useless
moves to scan the virtual space.

The result confirms that complex cooperation protocols may be easily de-
scribed using collective operations. In situations where cooperation becomes
very important (e.g., in the map sparse), collective operation is very effective
because it simplifies the description of cooperation of agents. Even in situations
where cooperation is not important (e.g., in the map dense), the agent team uses
collective operation may also achieve good performance if it uses appropriate co-
operation scheme to reduce the risk of “over-cooperating” (i.e., too concentrated
on a region).

7 Conclusion and future work

We have presented a new agent oriented programming language in which agent
cooperation is highly abstracted by using collective operations. The commu-
nication model underlying our system ensures the autonomy of agents while
providing full support for message passing and coordination. The system is
therefore suitable for developing multiagent system, in which agents are au-
tonomously, pro-actively and reactively taking actions while cooperating with
others to achieve the goal. We also discussed about the application of our model
in deriving global knowledge and shows the experiment result that confirms the
effectiveness of our cooperation model. We are going to implement several real-
world multiagent system benchmarks (such as RobocupSoccer or RobocupRes-
cue agent team) to investigate the effectiveness of the language and the commu-
nication model.

References

1. Shoham Y.: Agent oriented programming. Artificial Intelligent 60(1) (1993) 51–92
2. Hindriks K.V., et al.: Architecture for Agent Programming Languages. In Proc. of

the 14th European Conference on Artificial Intelligence (ECAI 2000)
3. Rao A., Georgeff M.: Modeling rational agents within a BDI architecture. In Proc.

of the Intl. Conf. on Knowledge Representation and Reasoning KR-91 (1991)
4. Rao A.: AgentSpeak(L): BDI Agents speak out in a logical computable language.

In Proc. of the 7th European Workshop on Modeling Autonomous Agents in a
Multi-Agent World (1996)

5. Jennings, N. R.: Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence 75(2) (1995) 195–240

6. The Message Passing Interface. http://www-unix.mcs.anl.gov/mpi/
7. Pynadath D., et al.: Toward team-oriented programming. In Proc. of the 6th Inter-

national Workshop on Agent Theories, Architectures, and Languages (ATAL 1999)
8. Schumacher M.: Objective coordination in multi-agent system engineering. Lecture

Notes in Computer Science 2039 (2001)
9. The LINQ project. http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

