
Yaccai: A multiagent system development framework

Nguyen Tuan Duc † and Ikuo Takeuchi†

This paper presents a new agent oriented programming language which utilizes the idea of
collective operations in parallel programming to abstract agents cooperation while maintain-
ing the autonomy of agent programs. The communication model underlying our language
execution system separates program code for agent behavior from code for message pass-
ing and makes the description of autonomous agent easier. Moreover, collective operations
simplify the process of deriving global knowledge, a crucial problem in multiagent systems.
Because of these characteristics, our system is effective for developing multi-agent systems.

1. Introduction

Research in agent oriented programming lan-
guage (AOP)1) has focused on the description
of mental state of autonomous agents which
contains the expression of belief, desire and in-
tention in the language. Beside autonomy, co-
operation is another important aspect of agent
and a lot of studies on cooperation model have
been done2)3). However, there are few studies
on integrating cooperation in AOP. In this pa-
per, we present a method for simplifying the
description of cooperating agents by collective
operations in AOP. Moreover, we propose a
new communication model that provides full
support for message passing while maintain-
ing the autonomous computational model of
agents. Therefore, our language and commu-
nication model are appropriate for description
of multiagent systems. We have developed the
interpreter and execution environment for the
proposed language in a framework called Yac-
cai (Yet another concurrent cooperating agents
infrastructure☆).

2. Overview of the language

Our language is agent oriented because it sup-
ports the description of mental state of agents
and automatically generates reasoning cycle

† Graduate School of Information Science and Tech-
nology, The University of Tokyo

☆ Yaccai can be downloaded from http://www.nue.ci.i.u-
tokyo.ac.jp/%7Educ/yaccai/

Notice for the use of this material. The copyright of
this material is retained by the Information Process-
ing Society of Japan (IPSJ). This material is pub-
lished on this web page with the agreement of the au-
thor(s) and the IPSJ. Please be complied with Copy-
right Law of Japan and the Code of Ethics of IPSJ if
any users wish to reproduce, make derivative work,
distribute or make available to the public any part
or whole thereof. All Rights Reserved, Copyright
(C) Information Processing Society of Japan.

(the cycle of sense - reason - act). The lan-
guage provides constructs to define classes and
agent classes like in normal object oriented lan-
guages. It borrows the concept of “communica-
tor” and “collective operations” from MPI4) to
model agent group and abstract agent cooper-
ation.

We provide a built-in belief-base in which
agent program may use to store agent’s beliefs
and language constructs for querying and man-
aging the belief-base based on ideas from LINQ
(language integrated query). Belief-base oper-
ations are briefly described in Table 1.

Table 1 Belief-base operations

operation example
add fact belief fact new {x = 1, y = 2};
query belief query {x, y};
projection belief query {x, y} as p{x};
conditional query belief query {x, y} as p where p.x == 1;
remove belief remove {x, y};
conditional remove belief remove {x, y} as p where p.x == 1;
join (belief query {x, y} as p) join

(belief query {y, z} as q) on p.y == q.y;

Figure 1 shows an example of a multiagent
system definition in our language. Once the
agent is created, the constructor will be called
and then the plan “act” will automatically be
executed. Each agent is mapped to a process
(including process in remote host). The main
plan (“act”) and the plan for reacting to in-
coming messages (“MsgListener”) are executed
in different threads. Each agent in the exam-
ple simply broadcasts a “Hello” message and
its identifier (rank) to others. When an agent
received “Hello” message, it stores the host ad-
dress of the sender into belief-base.

3. Abstraction of agent cooperation

We use collective operations (Broadcast, Re-
duce, Gather etc.) to abstract the cooperation
process of agents. The concept of “communi-

1 agentclass HelloAgent {

2 public m_comm;

3 public function HelloAgent() {

4 m_comm = Environment.GetCommunicator(

5 "World", MsgListener);

6 }

7 public plan MsgListener(msg) {

8 id = -1;

9 match msg.Value with {

10 "Hello from", @{id}, "at", @{addr} -> {

11 belief fact new {rank=id, host=addr};

12 }

13 }

14 }

15 public plan act() {

16 myRank = Environment.GetRank();

17 m_comm.Bcast("Hello from " + myRank +

18 " at " + Environment.Hostname());

19 }

20 }

21

22 class SimpleMAS {

23 public static function Main() {

24 a1 = create HelloAgent() at "localhost";

25 a2 = create HelloAgent() at "somehost.com";

26 }

27 }

Fig. 1 A simple multiagent system definition

cator” is the same as in MPI4), but collective
operations’ syntax and semantics are different.
Table 2 shows the list of collective operations
that we support.

Table 2 Collective operations

Operation Example
Barrier comm.Barrier(“barrier name”);
Broadcast comm.Bcast(msg);
Reduce comm.Reduce(operator, expression);
Gather comm.Gather(expression);
Scatter comm.Scatter(array of msg);

Collective operations in normal parallel dis-
tributed programming library such as MPI4)
must be invoked in parallel by all processes that
are participating in the operations. This re-
quirement ensures the efficiency for the execu-
tion of collective operations but it causes diffi-
culty in maintaining the autonomy of each pro-
cess. In our system, we allow collective opera-
tions to be invoked by just one agent and other
agents will automatically participate in the op-
erations, as in the plan “act” in Fig. 1.

Collective operations allow agents to effec-
tively cooperate with other agents in the same
communicator. They make the process of de-
riving global information easier. For example,
an agent can get the sum of ID of all agents
in the system by invoking a reduce operation:
“comm.Reduce(SUM, belief query ID);”. The
expression “belief query ID” is evaluated at
each agent and the results are summed up by
the operator SUM.

4. Communication and execution model

The execution of collective operation is not
simple because it involves in all agents while the
operation is invoked by just one agent. To sup-
port this new syntax of collective operation, we
divided each agent into two layers: the agent
reasoning layer and the message passing layer
as shown in Fig. 2. The reasoning layer con-
tains user’s code for the agent program while
the message passing layer contains code of the
execution environment. The message process-
ing plan and main plan are in the agent rea-
soning layer. This separation correctly fits the

Fig. 2 Communication model

requirements of autonomous agent description
and the new collective operation syntax.

5. Conclusion and future work

We have presented a new agent oriented pro-
gramming language in which agent coopera-
tion is highly abstracted by using collective op-
erations. The communication model underly-
ing our system ensures the autonomy of agents
while providing full support for message pass-
ing and coordination. We are going to im-
plement several real-world multiagent system
benchmarks to investigate the effectiveness of
the language and the communication model.

References

1) Shoham, Y.: ”Agent Oriented Programming”
in: Journal of Artificial Intelligence, 60 (1)
(1993) 51-92.

2) Pynadath, D., et al.: Toward team-oriented
programming . Proceedings of ATAL’99, pub-
lished as Springer Verlag LNAI “Intelligent
Agents VI”.

3) Michael Schumacher: Objective coordination
in multi-agent system engineering . LNAI 2039.

4) The Message Passing Interface. http://www-
unix.mcs.anl.gov/mpi/.

